刷题首页
题库
高中数学
题干
平面内,圆有如下性质:“圆心与弦(非直径)中点的连线垂直于弦”由此类比可以得到空间中,球有如下性质( )
A.球心与弦(非直径)的中点连线垂直于弦
B.球心与该球小圆圆心的连线垂直于小圆
C.与球心距离相等的弦长相等
D.与球心距离相等的小圆面积相等
上一题
下一题
0.99难度 单选题 更新时间:2019-11-06 04:43:06
答案(点此获取答案解析)
同类题1
过正三角形的外接圆的圆心且平行于一边的直线分正三角形两部分的面积比为4∶5,类比此性质:过正四面体的外接球的球心且平行于一个面的平面分正四面体两部分的体积比为_______.
同类题2
下面几种是合情推理的是( )
①由“已知两条直线平行同旁内角互补”,推测“如果
和
是两条平行直线的同旁内角,那么
”;
②由“平面三角形的性质”,推测“空间四面体的性质”;
③数列
中,由“
”推出“
”;
④由“数列1,0,1,0,……”推测“这个数列的通项公式
”.
A.①②
B.②④
C.②③
D.③④
同类题3
设
是边长为
的正
内的一点,
点到三边的距离分别为
,则
;类比到空间,设
是棱长为
的空间正四面体
内的一点,则
点到四个面的距离之和
=___________.
同类题4
我们知道:在长方形
中,如果设
,
,那么长方形
的外接圆的半径
满足:
.类比上述结论,在长方体
中,如果设
,
,
,那么长方体
的外接球的半径
满足的关系式是( )
A.
B.
C.
D.
同类题5
在平面几何中,有这样一个定理:过三角形的内心作一直线,将三角形分成的两部分的周长比等于其面积比.请你类比写出在立体几何中,有关四面体的相似性质:
.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比