- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
近年来,我国工业经济发展迅速,工业增加值连年攀升,某研究机构统计了近十年(从2008年到2017年)的工业增加值(万亿元),如下表:
依据表格数据,得到下面的散点图及一些统计量的值.

(1)根据散点图和表中数据,此研究机构对工业增加值
(万亿元)与年份序号
的回归方程类型进行了拟合实验,研究人员甲采用函数
,其拟合指数
;研究人员乙采用函数
,其拟合指数
;研究人员丙采用线性函数
,请计算其拟合指数,并用数据说明哪位研究人员的函数类型拟合效果最好.(注:相关系数
与拟合指数
满足关系
).
(2)根据(1)的判断结果及统计值,建立
关于
的回归方程(系数精确到0.01);
(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本
的相关系数
,
,
,
.
年份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份序号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
工业增加值![]() | 13.2 | 13.8 | 16.5 | 19.5 | 20.9 | 22.2 | 23.4 | 23.7 | 24.8 | 28 |
依据表格数据,得到下面的散点图及一些统计量的值.
![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 20.6 | 82.5 | 211.52 | 129.6 |

(1)根据散点图和表中数据,此研究机构对工业增加值










(2)根据(1)的判断结果及统计值,建立


(3)预测到哪一年的工业增加值能突破30万亿元大关.
附:样本






随着时代的进步、科技的发展,“网购”已发展成为一种新的购物潮流,足不出户就可以在网上买到自己想要的东西,而且两三天就会送到自己的家门口,某网店统计了2015年至2019年(2015年时t=1)在该网店的购买人数
(单位:百人)的数据如下表:
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程
中:
,参考数据:
.

年份(t) | 1 | 2 | 3 | 4 | 5 |
![]() | 24 | 27 | 41 | 64 | 79 |
(1)依据表中给出的数据,求出y关于t的回归直线方程;
(2)根据(1)中的回归直线方程,预测2020年在该网店购物的人数是否有可能破万?
附:参考公式:回归方程



某公司为了预测下月产品销售情况,找出了近7个月的产品销售量
(单位:万件)的统计表:
但其中数据污损不清,经查证
,
,
.
(1)请用相关系数说明销售量
与月份代码
有很强的线性相关关系;
(2)求
关于
的回归方程(系数精确到0.01);
(3)公司经营期间的广告宣传费
(单位:万元)(
),每件产品的销售价为10元,预测第8个月的毛利润能否突破15万元,请说明理由.(毛利润等于销售金额减去广告宣传费)
参考公式及数据:
,相关系数
,当
时认为两个变量有很强的线性相关关系,回归方程
中斜率和截距的最小二乘估计公式分别为
,
.

月份代码![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
但其中数据污损不清,经查证



(1)请用相关系数说明销售量


(2)求


(3)公司经营期间的广告宣传费


参考公式及数据:






国际青年物理学家竞赛(简称IYPT)是当今最受重视的中学生顶级国际物理赛事,某中学物理兴趣小组通过实验对其中一道竞赛题的两个物理量u、v进行测量,得到10组数据
,
……
,通过散点图发现u、v具有较强的线性相关关系,并且利用最小二乘法求得线性回归方程:
,由于数据保存失误导致
丢失,但
被保存,通过所学知识可以求得
______.







下表提供了某工厂节能降耗技术改造后,一种产品的产量
(单位:吨)与相应的生产能耗
(单位:吨)的几组对应数据:

根据上表提供的数据,求得
关于
的线性回归方程为
,那么表格中
的值为( )



根据上表提供的数据,求得




A.3 | B.3.15 | C.3.25 | D.3.5 |
(1)已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
(2)线性回归直线必过点
;
(3)对于分类变量A与B的随机变量
,
越大说明“A与B有关系”的可信度越大.
(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数
的值越大,说明拟合的效果越好.
(5)根据最小二乘法由一组样本点
,求得的回归方程是
,对所有的解释变量
,
的值一定与
有误差.
以上命题正确的序号为____________.
(2)线性回归直线必过点

(3)对于分类变量A与B的随机变量


(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数

(5)根据最小二乘法由一组样本点





以上命题正确的序号为____________.
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨)标准煤的几组对照数据
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:


![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
(1)请根据上表提供的数据,用最小二乘法求出



(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
参考公式:

下列说法错误的是( )
A.回归直线过样本点的中心![]() |
B.对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小 |
C.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1 |
D.在回归直线方程![]() ![]() |
某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示:

若
线性相关,线性回归方程为
,估计该制药厂6月份生产甲胶囊产量为( )

若


A.![]() | B.![]() | C.![]() | D.![]() |