- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(第
周)和市场占有率(
)的几组相关数据如下表:
(1)根据表中的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)根据上述线性回归方程,预测在第几周,该款旗舰机型市场占有率将首次超过
(最后结果精确到整数).
参考公式:
,
.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据表中的数据,用最小二乘法求出



(2)根据上述线性回归方程,预测在第几周,该款旗舰机型市场占有率将首次超过

参考公式:


为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程
,则
_______.


收入![]() | 8.2 | 8.6 | 10.0 | 11.3 | 11.9 |
支出![]() | 6.2 | 7.5 | 8.0 | 8.5 | ![]() |
某公司为确定明年投入某产品的广告支出,对近5年的年广告支出
(单位:万元)与年销售额
(单位:万元)进行了初步统计,如下表所示.
经测算,年广告支出
与年销售额
满足线性回归方程
,则
的值为_____.


年广告支出![]() | 2 | 3 | 5 | 7 | 8 |
年销售额![]() | 28 | 37 | ![]() | 60 | 70 |
经测算,年广告支出




己知某产品的销售额
与广告费用
之间的关系如表:
若求得其线性回归方程为
,则预计当广告费用为
万元时的销售额为__________.


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
若求得其线性回归方程为


随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价
:(单位:元/月)和购买人数
(单位:万人)的关系如表:
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合
与
的关系?并指出是正相关还是负相关;
(2)①求出
关于
的回归方程;
②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:
,
,
.
参考公式:相关系数
,回归直线方程
,其中
,
.


流量包的定价(元/月) | 30 | 35 | 40 | 45 | 50 |
购买人数(万人) | 18 | 14 | 10 | 8 | 5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合


(2)①求出


②若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考数据:



参考公式:相关系数




为了研究某班学生的脚长
(单位厘米)和身高
(单位厘米)的关系,从该班随机抽取
名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
.已知
,
,
.该班某学生的脚长为
,据此估计其身高为( )










A.![]() | B.![]() | C.![]() | D.![]() |
某企业一种商品的产量与单位成本数据如表:
现根据表中所提供的数据,求得
关于
的线性回归方程为
,则
值等于( )
产量![]() | 2 | 3 | 4 |
单位成本![]() ![]() | 3 | a | 7 |
现根据表中所提供的数据,求得




A.![]() | B.![]() | C.![]() | D.![]() |
高三学生为了迎接高考,要经常进行模拟考试,锻炼应试能力,某学生从升入高三到高考要参加
次模拟考试,下面是高三第一学期某学生参加
次模拟考试的数学成绩表:
(1)已知该考生的模拟考试成绩
与模拟考试的次数
满足回归直线方程
,若高考看作第
次模拟考试,试估计该考生的高考数学成绩;
(2)把
次模拟考试的成绩单放在五个相同的信封中,从中随机抽取
个信封研究成绩,求抽取的
个信封中恰有
个成绩不等于平均值
的概率.
参考公式:
,
.


模拟考试第![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
考试成绩![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)已知该考生的模拟考试成绩




(2)把





参考公式:

