- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
假设某种设备使用的年限
(年)与所支出的维修费用
(万元)有以下统计资料:
若由资料知
对
呈线性相关关系.试求:
(1)求
;
(2)线性回归方程
;
(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算
的值时,可根据以下公式:


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
维修费用![]() | 2 | 4 | 5 | 6 | 7 |
若由资料知


(1)求

(2)线性回归方程

(3)估计使用10年时,维修费用是多少?
附:利用“最小二乘法”计算


某电子科技公司由于产品采用最新技术,销售额不断增长,最近
个季度的销售额数据统计如下表(其中
表示
年第一季度,以此类推):
(1)公司市场部从中任选
个季度的数据进行对比分析,求这
个季度的销售额都超过
千万元的概率;
(2)求
关于
的线性回归方程,并预测该公司
的销售额.
附:线性回归方程:
其中
,
参考数据:
.



季度 | ![]() | ![]() | ![]() | ![]() | ![]() |
季度编号x | ![]() | ![]() | ![]() | ![]() | ![]() |
销售额y(百万元) | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)公司市场部从中任选



(2)求



附:线性回归方程:



参考数据:

某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:


某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动.活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为x元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这200万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取1000名,奖励每名用户1000元的红包.为了合理确定保费x的值,该手机厂商进行了问卷调查,统计后得到下表
其中y表示保费为x元时愿意购买该“手机碎屏险”的用户比例
:
(1)根据上面的数据求出y关于x的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为
已知更换一次该型号手机屏幕的费用为2000元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于70万元,能否把保费x定为5元?
参考公式:
,
,
.
参考数据:
.


x | 10 | 20 | 30 | 40 | 50 |
y | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)根据上面的数据求出y关于x的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为

参考公式:



参考数据:

已知变量x,y之间具有较强的线性相关性,测得它们的四组数据如表所示:
现已求得变量x,y之间的回归方程为
,请根据给出的条件,预测
时,y的值约为( )
x | 1 | 2 | 3 | 4 |
y | ![]() | ![]() | ![]() | ![]() |
现已求得变量x,y之间的回归方程为


A.![]() | B.![]() | C.![]() | D.![]() |
某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数
(万人)与年份
的数据:
该景点为了预测2021年的旅游人数,建立了
与
的两个回归模型:

模型①:由最小二乘法公式求得
与
的线性回归方程
;
模型②:由散点图的样本点分布,可以认为样本点集中在曲线
的附近.
(1)根据表中数据,求模型②的回归方程
.(
精确到个位,
精确到0.01).
(2)根据下列表中的数据,比较两种模型的相关指数
,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).
参考公式、参考数据及说明:
①对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计分别为
.
②刻画回归效果的相关指数
.
③参考数据:
,
.
表中
.


第![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人数![]() | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
该景点为了预测2021年的旅游人数,建立了



模型①:由最小二乘法公式求得



模型②:由散点图的样本点分布,可以认为样本点集中在曲线

(1)根据表中数据,求模型②的回归方程



(2)根据下列表中的数据,比较两种模型的相关指数

回归方程 | ①![]() | ②![]() |
![]() | 30407 | 14607 |
参考公式、参考数据及说明:
①对于一组数据



②刻画回归效果的相关指数

③参考数据:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中

某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费对年销售量(单位:t)的影响.该公司对近5年的年宣传费和年销售量数据进行了研究,发现年宣传费x(万元)和年销售量y(单位:t)具有线性相关关系,并对数据作了初步处理,得到下面的一些统计量的值.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为
,根据(1)中的结果回答下列问题:
①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程
中的斜率和截距的最小二乘估计公式分别为

参考数据:
.

(1)根据表中数据建立年销售量y关于年宣传费x的回归方程;
(2)已知这种产品的年利润z与x,y的关系为

①当年宣传费为10万元时,年销售量及年利润的预报值是多少?
②估算该公司应该投入多少宣传费,才能使得年利润与年宣传费的比值最大.
附:回归方程


参考数据:
