- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- + 散点图
- 绘制散点图
- 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种产品的广告费支出
与销售额(单位:百万元)之间有如下对应数据:
如果
与
之间具有线性相关关系.
(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为
百万元时的销售额.

![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 50 | 60 | 70 |
如果


(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为

某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
=
x+
;
(结果精确到0.1,参考数据:2×30+4×40+5×50+6×60+8×70=1390)
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 50 | 60 | 70 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程



(结果精确到0.1,参考数据:2×30+4×40+5×50+6×60+8×70=1390)
某工厂对某产品的产量与单位成本的资料分析后有如下数据:
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关.
(Ⅱ) 求单位成本
与月产量
之间的线性回归方程.(其中已计算得:
,结果保留两位小数)
月 份 | 1 | 2 | 3 | 4 | 5 | 6 |
产量x千件 | 2 | 3 | 4 | 3 | 4 | 5 |
单位成本y元/件 | 73 | 72 | 71 | 73 | 69 | 68 |
(Ⅰ) 画出散点图,并判断产量与单位成本是否线性相关.
(Ⅱ) 求单位成本



.以下是粤西地区某县搜集到的新房屋的销售价格
和房屋的面积
的数据:

(1)画出数据散点图;
(2)由散点图判断新房屋销售价格y和房屋面积x是否具有线性相关关系?若有,求线性回归方程.(保留四位小数)
(3)根据房屋面积预报销售价格的回归方程,预报房屋面积为
时的销售价格.
参考公式:

参考数据:
,

,



(1)画出数据散点图;
(2)由散点图判断新房屋销售价格y和房屋面积x是否具有线性相关关系?若有,求线性回归方程.(保留四位小数)
(3)根据房屋面积预报销售价格的回归方程,预报房屋面积为

参考公式:


参考数据:




一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中
.
(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(Ⅱ)求回归直线方程;(结果保留到小数点后两位)
(参考数据:
,
,
,
,
,
)
(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
人数![]() | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数![]() | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
其中

(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图;
(Ⅱ)求回归直线方程;(结果保留到小数点后两位)
(参考数据:






(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)

一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:
其中
.

(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图.
(Ⅱ)求回归直线方程.(结果保留到小数点后两位)
(参考数据:
,
,
,
,
,
)
(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
人数![]() | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
件数![]() | 4 | 7 | 12 | 15 | 20 | 23 | 27 |
其中


(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图.
(Ⅱ)求回归直线方程.(结果保留到小数点后两位)
(参考数据:






(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)
某校兴趣小组在某小商品批发市场统计了某商品的销售量
(单位:件)与销售价格
(元/件)的
组数据并画成了如图所示的散点图,则
,
的线性回归方程可能为()







A.![]() | B.![]() |
C.![]() | D.![]() |
一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验.收集的数据如下:

(I)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(Ⅲ)现需生产20件此零件,预测需用多长时间?
(注:用最小二乘法求线性回归方程系数公式
.

(I)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出



(Ⅲ)现需生产20件此零件,预测需用多长时间?
(注:用最小二乘法求线性回归方程系数公式

变量x,y的几组实验测量数据如下表所示:
则根据上表数据,在下列函数中,拟合变量
,
关系的最佳函数是( )
![]() | 0.50 | 0.99 | 2.01 | 2.98 |
![]() | 1.42 | 1.99 | 3.98 | 8.00 |
则根据上表数据,在下列函数中,拟合变量


A.![]() | B.![]() |
C.![]() | D.![]() |