- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- + 绘制散点图
- 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某医院用光电比色计检查尿汞时,得尿汞含量(毫克/升)与消光系数如下表:
(1)作散点图;
(2)如果
与
之间具有线性相关关系,求回归线直线方程;
(3)估计尿汞含量为9毫克/升时消光系数.
,
.
参考数据:
,
.
尿汞含量![]() | 2 | 4 | 6 | 8 | 10 |
消光系数![]() | 64 | 138 | 205 | 285 | 360 |
(1)作散点图;
(2)如果


(3)估计尿汞含量为9毫克/升时消光系数.


参考数据:


某种产品的广告费支出
(百万元)与销售额
(百万元)之间有如下对应数据:
(1)画出散点图;
(2)求出线性回归方程,并预测广告费支出为1千万时销售额为多少万.
(参考公式):


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求出线性回归方程,并预测广告费支出为1千万时销售额为多少万.
(参考公式):

某研究机构对某校高二学生的记忆力
和判断力
进行统计分析,得到下表数据.

(1)请画出表中数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程.
(最小二乘法求线性回归方程中,系数计算公式:
,
.)
本题已知数据:
,
.


![]() | 6 | 8 | 10 | 12 |
![]() | 2 | 3.5 | 4.5 | 6 |

(1)请画出表中数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出


(最小二乘法求线性回归方程中,系数计算公式:


本题已知数据:


某城市理论预测2020年到2024年人口总数与年份的关系如下表所示:
(1)请在右面的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
(参考公式:
,
)
年份202x(年) | 0 | 1 | 2 | 3 | 4 |
人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(1)请在右面的坐标系中画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)据此估计2025年该城市人口总数.
(参考公式:


某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10万元时,销售额为多少?
附:公式为:
,参考数字:
,
.


![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为10万元时,销售额为多少?
附:公式为:



一个车间为了规定工时定额,需要确定加工某种零件所花费的时同,为此进行了6次试验,收集数据如下:
(1)在给定的坐标系中画出散点图,并指出两个变量是正相关还是负相关;
(2)求回归直线方程;
(3)试预测加工7个零件所花费的时间?
附:对于一组数据
,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
零件数x(个) | 1 | 2 | 3 | 4 | 5 | 6 |
加工时间y(小时) | 3.5 | 5 | 6 | 7.5 | 9 | 11 |
(1)在给定的坐标系中画出散点图,并指出两个变量是正相关还是负相关;
(2)求回归直线方程;
(3)试预测加工7个零件所花费的时间?
附:对于一组数据






下表提供了某厂节能降耗技术改造后,生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据

(1)画出散点图,并判断是否线性相关;
(2)求y与x之间的回归方程.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |

(1)画出散点图,并判断是否线性相关;
(2)求y与x之间的回归方程.
假设关于某设备的使用年限x(年)和所支出的维修费用y万元有如下的统计资料:
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
附注:①参考公式:回归方程
中斜率和截距的最小二乘估计分别为
;
②参考数据:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)画出散点图并判断是否线性相关;
(2)如果线性相关,求线性回归方程;
(3)估计使用年限为10年时,维修费用是多少?
附注:①参考公式:回归方程


②参考数据:

为研究质量
(单位:克)对弹簧长度
(单位:厘米)的影响,对不同质量的6个物体进行测量,数据如表所示:
(1)作出散点图并求线性回归方程;
(2)求出
;
(3)进行残差分析.


![]() | 5 | 10 | 15 | 20 | 25 | 30 |
![]() | 7.25 | 8.12 | 8.95 | 9.90 | 10.9 | 11.8 |
(1)作出散点图并求线性回归方程;
(2)求出

(3)进行残差分析.