- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 绘制散点图
- + 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了推广电子支付,某公交公司推出支付宝和微信扫码支付乘车优惠活动,活动期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,现用
表示活动推出第
天使用扫码支付的人次(单位:十人次),统计数据如表1所示:
表1
根据以上数据绘制了散点图.

(1)根据散点图判断,在活动期内,
与
(
,
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表1中的数据建立
关于
的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)优惠活动结束后,车队对乘客的支付方式进行统计,结果如下
车队为缓解周边居民出行压力,以90万元的单价购进了一批新车,根据以往的经验可知每辆车每个月的运营成本约为0.978万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有
的概率享受6折优惠,有
的概率享受7折优惠,有
的概率享受8折优惠,有
的概率享受9折优惠.预计该车队每辆车每个月有1.5万人次乘车,根据所给数据,以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要
年才能开始盈利,求
的值.
参考数据:
其中
,
.
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 6 | 12 | 23 | 34 | 65 | 106 | 195 |
表1
根据以上数据绘制了散点图.

(1)根据散点图判断,在活动期内,






(2)根据(1)的判断结果及表1中的数据建立


(3)优惠活动结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比列 | 10% | 54% | 36% |
车队为缓解周边居民出行压力,以90万元的单价购进了一批新车,根据以往的经验可知每辆车每个月的运营成本约为0.978万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有






参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
63 | 1.55 | 2561 | 50.40 | 3.55 |
其中


参考公式:对于一组数据






在国家积极推动美丽乡村建设的政策背景下,各地根据当地生态资源打造了众多特色纷呈的乡村旅游胜地.某人意图将自己位于乡村旅游胜地的房子改造成民宿用于出租,在旅游淡季随机选取100天,对当地已有的六间不同价位的民宿进行跟踪,统计其出租率
(
),设民宿租金为
(单位:元/日),得到如图所示的数据散点图.

(1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.
(2)①根据散点图判断,
与
哪个更适合于此模型(给出判断即可,不必说明理由)?根据判断结果求回归方程;
②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出
的固定成本,若民宿出租,则每天需要再付出
的日常支出成本.试用①中模型进行分析,旅游淡季民宿租金约定为多少元时,该民宿在这280天的收益
达到最大?
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
;
.
参考数据:记
,
,
,
,
,
,
,
,
,
.




(1)若用“出租率”近似估计旅游淡季民宿每天租出去的概率,求租金为388元的那间民宿在淡季内的三天中至少有2天闲置的概率.
(2)①根据散点图判断,


②若该地一年中旅游淡季约为280天,在此期间无论民宿是否出租,每天都要付出



附:对于一组数据






参考数据:记










某企业为确定下一年投入某种产品的研发费用,需了解年研发费用
(单位:千万元)对年销售量
(单位:千万件)的影响,统计了近10年投入的年研发费用
与年销售量
的数据,得到散点图如图所示.

(1)利用散点图判断
和
(其中
均为大于0的常数)哪一个更适合作为年销售量
和年研发费用
的回归方程类型(只要给出判断即可,不必说明理由);
(2)对数据作出如下处理,令
,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求
关于
的回归方程;
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为
.





(1)利用散点图判断





(2)对数据作出如下处理,令



![]() | ![]() | ![]() | ![]() |
15 | 15 | 28.25 | 56.5 |
附:对于一组数据



以下是关于散点图和线性回归的判断,其中正确命题的序号是______(选出所有正确的结论)
①若散点图中的点的分布从整体上看大致在一条直线附近,则这条直线为回归直线;
②利用回归直线,我们可以进行预测.若某人37岁,我们预测他的体内脂肪含量在
附近,则这个
是对年龄为37岁的人群中的大部分人的体内脂肪含量所做出的估计;
③若散点图中点散布的位置是从左下角到右上角的区域,则两个变量的这种相关为负相关;
④若散点图中点散布的位置是从左上角到右下角的区域,则两个变量的这种相关为正相关.
①若散点图中的点的分布从整体上看大致在一条直线附近,则这条直线为回归直线;
②利用回归直线,我们可以进行预测.若某人37岁,我们预测他的体内脂肪含量在


③若散点图中点散布的位置是从左下角到右上角的区域,则两个变量的这种相关为负相关;
④若散点图中点散布的位置是从左上角到右下角的区域,则两个变量的这种相关为正相关.
有一散点图如图所示,在5个
数据中去掉
后,下列说法正确的是( )




A.残差平方和变小 | B.相关系数![]() |
C.相关指数![]() | D.解释变量![]() ![]() |
为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线
近似地刻画其相关关系,根据图形,以下结论最有可能成立的是( )



A.线性相关关系较强,b的值为1.25 |
B.线性相关关系较强,b的值为0.83 |
C.线性相关关系较强,b的值为-0.87 |
D.线性相关关系太弱,无研究价值 |
x和y的散点图如图所示,则下列说法中①x,y是负相关关系;②在该相关关系中,若用
拟合时的相关指数为
,用
拟合时的相关指数为
则
;③x,y之间不能建立线性回归方程;所有正确命题的序号为________.





