- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- + 散点图
- 绘制散点图
- 根据散点图判断是否线性相关
- 由散点图画求近似回归直线
- 回归直线方程
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某商场近 5 个月的销售额和利润额如表所示:

(1)画出散点图,观察散点图,说明两个变量有怎样的相关关系;
(2) 求出利润额
关于销售额
的回归直线方程;
(3) 当销售额为4千万元时,利用(2)的结论估计该商场的利润额(百万元).
,
,

(1)画出散点图,观察散点图,说明两个变量有怎样的相关关系;
(2) 求出利润额


(3) 当销售额为4千万元时,利用(2)的结论估计该商场的利润额(百万元).


假设关于某设备的使用年限x和所支出的维修费用y(万元)有如下的统计资料:
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程
的回归系数a,b;
(3)估计使用年限为10年时,维修费用是多少?
使用年限x | 2 | 3 | 4 | 5 | 6 |
维修费用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知y对x呈线性相关关系.
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程

(3)估计使用年限为10年时,维修费用是多少?
在测量一根新弹簧的劲度系数时,测得了如下的结果:
(1)请在下图坐标系中画出上表所给数据的散点图;

(2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程
;
(3)根据回归方程,求挂重量为
的物体时弹簧的长度.所求得的长度是弹簧的实际长度吗?为什么?
注:本题中的计算结果保留小数点后两位.
(参考公式:
,
)
(参考数据:
,
)
所挂重量(![]() | 1 | 2 | 3 | 5 | 7 | 9 |
弹簧长度(![]() | 11 | 12 | 12 | 13 | 14 | 16 |
(1)请在下图坐标系中画出上表所给数据的散点图;

(2)若弹簧长度与所挂物体重量之间的关系具有线性相关性,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

(3)根据回归方程,求挂重量为

注:本题中的计算结果保留小数点后两位.
(参考公式:


(参考数据:


平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深
(米)是随着一天的时间
(
,单位小时)呈周期性变化,某天各时刻
的水深数据的近似值如下表:

(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的
时且水深不低于1.05米的时候进行训练,根据(1)中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全.





(1)根据表中近似数据画出散点图(坐标系在答题卷中),观察散点图,选择一个合适的函数模型,并求 出该拟合模型的函数解析式;
(2)为保证队员安全,规定在一天中的

某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本
(单位:元/
)与上市时间
(单位:10天)的数据如下表:
(1)根据上表数据,从下列函数:
,
,
,
中(其中
),选取一个合适的函数模型描述该蔬菜种植成本
与上市时间
的变化关系;
(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.



时间![]() | 5 | 11 | 25 |
种植成本![]() | 15 | 10.8 | 15 |
(1)根据上表数据,从下列函数:







(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.
下列判断错误的是( )
A.若随机变量![]() ![]() ![]() |
B.若![]() ![]() ![]() ![]() |
C.若随机变量![]() ![]() ![]() |
D.“![]() ![]() |