- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知一定点
,及一定直线
:
,以动点
为圆心的圆
过点
,且与直线
相切.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
在直线
上,直线
,
分别与曲线
相切于
,
,
为线段
的中点.求证:
,且直线
恒过定点.







(Ⅰ)求动点


(Ⅱ)设











已知抛物线
的焦点为
,准线为
,在抛物线
上任取一点
,过
做
的垂线,垂足为
.
(1)若
,求
的值;
(2)除
外,
的平分线与抛物线
是否有其他的公共点,并说明理由.








(1)若


(2)除



如图,已知抛物线C的顶点在原点,焦点F在
轴上,抛物线上的点A到F的距离为2,且A的横坐标为1. 过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足

(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.



(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.
已知倾斜角为
的直线经过抛物线
的焦点F,与抛物线G相交于A、B两点,且
.
(1)求抛物线G的方程;
(2)过点
的两条直线
、
分别交抛物线G于点C、D和 E、F,线段CD和EF的中点分别为M、N.如果直线
与
的倾斜角互余,求证:直线MN经过一定点.



(1)求抛物线G的方程;
(2)过点





设抛物线
的焦点为
,准线为
.已知以
为圆心,半径为4的圆与
交于
、
两点,
是该圆与抛物线
的一个交点,
.
(1)求
的值;
(2)已知点
的纵坐标为
且在
上,
、
是
上异于点
的另两点,且满足直线
和直线
的斜率之和为
,试问直线
是否经过一定点,若是,求出定点的坐标,否则,请说明理由.










(1)求

(2)已知点











设
,
是抛物线
上的两点,
是坐标原点,若
,则以下结论恒成立的结论个数为( )
①
;②直线
过定点
;③
到直线
的距离不大于1.





①





A.0 | B.1 | C.2 | D.3 |
如图所示,抛物线
的焦点为
.

(1)求抛物线
的标准方程;
(2)过
的两条直线分别与抛物线
交于点
,
与
,
(点
,
在
轴的上方).
①若
,求直线
的斜率;
②设直线
的斜率为
,直线
的斜率为
,若
,求证:直线
过定点.



(1)求抛物线

(2)过









①若


②设直线





