刷题首页
题库
高中数学
题干
已知一定点
,及一定直线
:
,以动点
为圆心的圆
过点
,且与直线
相切.
(Ⅰ)求动点
的轨迹
的方程;
(Ⅱ)设
在直线
上,直线
,
分别与曲线
相切于
,
,
为线段
的中点.求证:
,且直线
恒过定点.
上一题
下一题
0.99难度 解答题 更新时间:2018-07-17 04:10:22
答案(点此获取答案解析)
同类题1
已知抛物线
的焦点为
,
为抛物线
上异于原点的任意一点,过点
的直线
交抛物线
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
为正三角形.
(Ⅰ)求抛物线
的方程;
(Ⅱ)若直线
,且
和抛物线
有且只有一个公共点
,试问直线
(
为抛物线
上异于原点的任意一点)是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.
同类题2
已知抛物线
,直线
与
相交所得的长为8.
求
的值;
过原点O直线
与抛物线
交于
点,与直线
交于H点,过点H作
轴的垂线交抛物线
于
点,求证:直线
过定点.
同类题3
已知动圆过定点
,且在
x
轴上截得的弦长为4.
(1)求动圆圆心
M
的轨迹方程
C
;
(2)设不与
x
轴垂直的直线
l
与轨迹
C
交手不同两点
,
.若
,求证:直线
l
过定点.
同类题4
已知圆
和抛物线
,圆
与抛物线
的准线交于
、
两点,
的面积为
,其中
是
的焦点.
(1)求抛物线
的方程;
(2)不过原点
的动直线
交该抛物线于
,
两点,且满足
,设点
为圆
上任意一动点,求当动点
到直线
的距离最大时直线
的方程.
同类题5
设抛物线
的方程为
,
为直线
上任意一点,过点
作抛物线
的两条切线
,切点分别为
,
.
(1)当
的坐标为
时,求过
三点的圆的方程,并判断直线
与此圆的位置关系;
(2)求证:直线
恒过定点
.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
抛物线中的定点、定值
抛物线中的直线过定点问题