- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
的焦点为
,点
在
上且其横坐标为1,以
为圆心、
为半径的圆与
的准线相切.

(1)求
的值;
(2)过点
的直线
与
交于
,
两点,以
、
为邻边作平行四边形
,若点
关于
的对称点在
上,求
的方程.









(1)求

(2)过点












已知抛物线
的焦点为
,
轴上方的点
在抛物线上,且
,直线
与抛物线交于
,
两点(点
,
与
不重合),设直线
,
的斜率分别为
,
.
(Ⅰ)求抛物线的方程;
(Ⅱ)当
时,求证:直线
恒过定点并求出该定点的坐标.















(Ⅰ)求抛物线的方程;
(Ⅱ)当


已知抛物线
过点
,
是抛物线
上异于点
的不同两点,且以线段
为直径的圆恒过点
.
(I)当点
与坐标原点
重合时,求直线
的方程;
(II)求证:直线
恒过定点,并求出这个定点的坐标.







(I)当点



(II)求证:直线

过抛物线
的焦点
且斜率为
的直线交抛物线
于
,
两点,且
.
(1)求
的值;
(2)抛物线
上一点
,直线
(其中
)与抛物线
交于
,
两个不同的点(均与点
不重合),设直线
,
的斜率分别为
,
,
.动点
在直线
上,且满足
,其中
为坐标原点.当线段
最长时,求直线
的方程.







(1)求

(2)抛物线



















已知抛物线
过点
(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点
的直线
与抛物线交于两点
,点
关于
轴的对称点为
,试判断直线
是否过定点,并加以证明.


(Ⅰ)求抛物线的方程和焦点坐标;
(Ⅱ)过点







已知抛物线
:
的焦点
,直线
与
轴的交点为
,与抛物线
的交点为
,且
.
(1)求
的值;
(2)已知点
为
上一点,
是
上异于点
的两点,且满足直线
和直线
的斜率之和为
,证明直线
恒过定点,并求出定点的坐标.









(1)求

(2)已知点









已知抛物线
,过点
的动直线
交抛物线于
,
两点
(1)当
恰为
的中点时,求直线
的方程;
(2)抛物线上是否存在一个定点
,使得以弦
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,请说明理由





(1)当



(2)抛物线上是否存在一个定点




已知抛物线
:
的焦点为
,直线
与抛物线
交于
,
两点,
是坐标原点.
(1)若直线
过点
且
,求直线
的方程;
(2)已知点
,若直线
不过点
、不与坐标轴垂直,且
,证明:直线
过定点.








(1)若直线




(2)已知点




