- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点A(x1,y1),B(x2,y2),M(1,0),
=(3λ,4λ)(λ≠0),
=-4
,若抛物线y2=ax经过A和B两点,则a的值为( )



A.2 | B.-2 |
C.-4 | D.4 |
在平面直角坐标系
中,直线
与抛物线
相交于不同的
两点.
(1)如果直线
过抛物线的焦点,求
的值;
(2)如果
,证明直线
必过一定点,并求出该定点.




(1)如果直线


(2)如果


已知抛物线
,过定点
作不垂直于x轴的直线
,交抛物线于A,B两点.
(1)设O为坐标原点,求证:
为定值;
(2)设线段
的垂直分线与x轴交于点
,求n的取值范围;
(3)设点A关于x轴的对称点为D,求证:直线
过定点,并求出定点的坐标.



(1)设O为坐标原点,求证:

(2)设线段


(3)设点A关于x轴的对称点为D,求证:直线

已知抛物线
的焦点为
,
是抛物线上异于坐标原点的任意一点,以
为圆心,
为半径的圆交
轴负半轴于点
.平行于
的直线
与抛物线相切于点
,则直线
必过定点( )











A.![]() | B.![]() | C.![]() | D.![]() |
已知抛物线
的顶点在坐标原点
,过抛物线
的焦点
的直线
与该抛物线交于
两点,
面积的最小值为2.
(1)求抛物线
的标准方程;
(2)试问是否存在定点
,过点
的直线
与抛物线
交于
两点,当
三点不共线时,使得以
为直径的圆必过点
.若存在,求出所有符合条件的点;若不存在,请说明理由.







(1)求抛物线

(2)试问是否存在定点








设有二元关系
,已知曲线
.
(1)若
时,正方形
的四个顶点均在曲线
上,求正方形
的面积;
(2)设曲线
与
轴的交点是
,抛物线
与
轴的交点是
,直线
与曲线
交于
,直线
与曲线
交于
,求证直线
过定点,并求该定点的坐标;
(3)设曲线
与
轴的交点是
,
,可知动点
在某确定的曲线
上运动,曲线
上与上述曲线
在
时共有4个交点,其坐标分别是
、
、
、
,集合
的所有非空子集设为
,将
中的所有元素相加(若
只有一个元素,则和是其自身)得到255个数
,求所有正整数
的值,使得
是一个与变数
及变数
均无关的常数.


(1)若




(2)设曲线













(3)设曲线





















