- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 与抛物线焦点弦有关的几何性质
- 抛物线的通径问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)斜率为
的直线经过抛物线
的焦点,且与抛物线相交于A,B两点,则
_______;
(2)过抛物线
的焦点F的直线交抛物线于A,B两点,若
,
,则
_______.



(2)过抛物线




已知抛物线
的顶点在原点,
为抛物线的焦点.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
交于
两点,与圆
交于
两点,且
位于线段
上,若
,求直线
的方程.


(1)求抛物线

(2)过点










高三十二班同学设计了一个如图所示的“蝴蝶形图案”(阴影区域)来预示在6月的高考中,同学们展翅高飞,其中
是过抛物线
的焦点
的两条弦,且
,点
为
轴上一点,记
,其中
为锐角.

(1)求抛物线的方程;
(2)当“蝴蝶形图案”的面积最小时,求
的大小.









(1)求抛物线的方程;
(2)当“蝴蝶形图案”的面积最小时,求
