- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:
的焦点为F,过F作倾斜角为锐角的直线l交抛物线C于A、B两点,弦AB的中点M到抛物线C的准线的距离为5,则直线l的方程为( )

A.![]() | B.![]() |
C.![]() | D.![]() |
已知
是抛物线
上的任意一点,以
为圆心的圆与直线
相切且经过点
,设斜率为1的直线与抛物线
交于
两点,则线段
的中点的纵坐标为( )








A.2 | B.4 | C.6 | D.8 |
已知抛物线
:
(
),过点
的直线
与抛物线
相交于
,
两点,
为坐标原点,且
.
(1)求抛物线
的方程;
(2)点
坐标为
,直线
,
的斜率分别
,
,求证:
为定值.










(1)求抛物线

(2)点







已知抛物线方程
,
为焦点,
为抛物线准线上一点,
为线段
与抛物线的交点,定义:
.
(1)当
时,求
;
(2)证明:存在常数
,使得
.
(3)
为抛物线准线上三点,且
,判断
与
的关系.






(1)当


(2)证明:存在常数


(3)




已知点P在抛物线
上,且点P的横坐标为2,以P为圆心,
为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且
.
(1)求抛物线C的方程;
(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且
,求
的值.



(1)求抛物线C的方程;
(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且

