- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点为
,
为
上异于原点的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
,且有
.当点
的横坐标为3时,
为正三角形.
(1)求
的方程;
(2)延长
交抛物线于点
,过点
作抛物线的切线
,求证:
.













(1)求

(2)延长





在平面直角坐标系中,已知点
,直线
,动直线
垂直于
于点
,线段
的垂直平分线交
于点
,设
的轨迹为
.
(1)求曲线
的方程;
(2)以曲线
上的点
为切点作曲线
的切线
,设
分别与
轴交于
两点,且
恰与以定点
为圆心的圆相切. 当圆
的面积最小时,求
与
面积的比.










(1)求曲线

(2)以曲线












已知
是直线
上任意一点,过
作
,线段
的垂直平分线交
于点
.
(Ⅰ)求点
的轨迹
对应的方程;
(Ⅱ)过点
的直线
与点
的轨迹
相交于
两点,(
点在
轴上方),点
关于
轴的对称点为
,且
,求
的外接圆的方程.








(Ⅰ)求点


(Ⅱ)过点












如图,在平面直角坐标系
中,抛物线
(
)的准线
与
轴交于点
,过点
的直线与抛物线交于
两点.设
到准线
的距离
(
).












(1)若,求抛物线的标准方程;
(2)若,求证:直线
的斜率为定值.