- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
:
的焦点
与椭圆
:
的一个焦点重合,点
在抛物线上,过焦点
的直线
交抛物线于
、
两点.
(Ⅰ)求抛物线
的方程以及
的值;
(Ⅱ)记抛物线的准线
与
轴交于点
,试问是否存在常数
,使得
且
都成立?若存在,求出实数
的值;若不存在,请说明理由.










(Ⅰ)求抛物线


(Ⅱ)记抛物线的准线







设抛物线C:y2=4x的焦点为F,直线l 过点M(2,0)且与C交于A,B两点,
,若|AM|=λ|BM|,则λ=( )

A.![]() | B.2 | C.4 | D.6 |
(本题满分15分)已知抛物线C:y2=2px(p>0),曲线M:x2+2x+y2=0(y>0).过点P(-3,0)与曲线M相切于点A的直线l,与抛物线C有且只有一个公共点B.

(Ⅰ)求抛物线C的方程及点A,B的坐标;
(Ⅱ)过点B作倾斜角互补的两条直线分别交抛物线C于S,T两点(不同于坐标原点),求证:直线ST∥直线AO.

(Ⅰ)求抛物线C的方程及点A,B的坐标;
(Ⅱ)过点B作倾斜角互补的两条直线分别交抛物线C于S,T两点(不同于坐标原点),求证:直线ST∥直线AO.
如图,在平面直角坐标系
中,点
,
在抛物线
上.

(1)求
,
的值;
(2)过点
作
垂直于
轴,
为垂足,直线
与抛物线的另一交点为
,点
在直线
上.若
,
,
的斜率分别为
,
,
,且
,求点
的坐标.







(1)求


(2)过点
















在平面直角坐标系xOy中,已知抛物线C:
的焦点为F,定点
.若射线FA与抛物线C 相交于点M,与抛物线C的准线相交于点N,则FM:MN的值是 .

