- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 直线与椭圆的位置关系
- 椭圆的弦长、焦点弦
- 椭圆的中点弦
- 椭圆中的定点、定值
- + 椭圆中的定直线
- 双曲线的弦长、焦点弦
- 双曲线的中点弦
- 双曲线中的定点、定值
- 双曲线中的定直线
- 直线与抛物线的位置关系
- 抛物线的弦长
- 抛物线焦点弦的性质
- 抛物线中的参数范围及最值
- 抛物线中的定点、定值
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设椭圆
的离心率为
,直线
过椭圆的右焦点
,与椭圆交于点
;若
垂直于
轴,则
.
(1)求椭圆的方程;
(2)椭圆的左右顶点分别为
,直线
与直线
交于点
.求证:点
在定直线上.








(1)求椭圆的方程;
(2)椭圆的左右顶点分别为





已知椭圆
:
的离心率为
,过左焦点
的直线与椭圆交于
,
两点,且线段
的中点为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为
上一个动点,过点
与椭圆
只有一个公共点的直线为
,过点
与
垂直的直线为
,求证:
与
的交点在定直线上,并求出该定直线的方程.








(Ⅰ)求椭圆

(Ⅱ)设










已知椭圆
的左、右焦点分别为
,
,直线
与椭圆
在第一象限内的交点是
,且
轴,
.
(1)求椭圆
的方程;
(2)是否存在斜率为
的直线
与以线段
为直径的圆相交于
,
两点,与椭圆
相交于
,
两点,且
?若存在,求出直线
的方程;若不存在,说明理由.








(1)求椭圆

(2)是否存在斜率为










教材曾有介绍:圆
上的点
处的切线方程为
.我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用.已知,直线
与椭圆
有且只有一个公共点.

(1)求
的值;
(2)设
为坐标原点,过椭圆
上的两点
、
分别作该椭圆的两条切线
、
,且
与
交于点
.当
变化时,求
面积的最大值;
(3)在(2)的条件下,经过点
作直线
与该椭圆
交于
、
两点,在线段
上存在点
,使
成立,试问:点
是否在直线
上,请说明理由.









(1)求

(2)设











(3)在(2)的条件下,经过点










如图,设椭圆
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且
0,若过 A,Q,F2三点的圆恰好与直线
相切,过定点 M(0,2)的直线
与椭圆C交于G,H两点(点G在点M,H之间).(Ⅰ)求椭圆C的方程;(Ⅱ)设直线
的斜率
,在x轴上是否存在点P(
,0),使得以PG,PH为邻边的平行四边形是菱形?如果存在,求出
的取值范围;如果不存在,请说明理由;(Ⅲ)若实数
满足
,求
的取值范围. 












已知椭圆
,
,
分别为椭圆的左右焦点,
为椭圆上任意一点
(1)若
,求
的面积;
(2)是否存在着直线
,使得当
经过椭圆左顶点
且与椭圆相交于点
,点
与点
关于
轴对称,满足
,若存在,请求出直线
的方程;若不存在,请说明理由.




(1)若


(2)是否存在着直线









在平面直角坐标系中,
,设
的内切圆分别与边
相切于点
,已知
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过
的直线与
轴正半轴交于点
,与曲线E交于点
轴,过
的另一直线与曲线
交于
两点,若
,求直线
的方程.







(1)求曲线

(2)过









如图,A、B为椭圆
的两个顶点,过椭圆的右焦点F作
轴的垂线与其交于点C,若AB∥OC(O为坐标原点),则直线AB的斜率为______.



设椭圆
的左、右焦点分别为
,
,离心率为
,过点
的直线
交椭圆
于点
,
(不与左右顶点重合),连接
,已知
的周长为8.
(1)求椭圆
的方程;
(2)设
,若
,求直线
的方程.












(1)求椭圆

(2)设


