刷题首页
题库
高中数学
题干
已知椭圆
:
的离心率为
,过左焦点
的直线与椭圆交于
,
两点,且线段
的中点为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为
上一个动点,过点
与椭圆
只有一个公共点的直线为
,过点
与
垂直的直线为
,求证:
与
的交点在定直线上,并求出该定直线的方程.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-06 03:54:33
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,
、
分别为椭圆
的左、右顶点,点
满足
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
经过点
且与
交于不同的两点
、
,试问:在
轴上是否存在点
,使得直线
与直线
的斜率的和为定值?若存在,请求出点
的坐标及定值;若不存在,请说明理由.
同类题2
设椭圆
的左右焦点分别为
,离心率
,点
在直线
的左侧,且
F
2
到
l
的距离为
.
(1)求
的值;
(2)设
是
上的两个动点,
,证明:当
取最小值时,
.
同类题3
已知椭圆
的右焦点为
,离心率为
.
(1)求椭圆
的方程;
(2)若直线
与椭圆
相交于
两点,且以
为直径的圆经过原点
,求证:点
到直线
的距离为定值;
(3)在(2)的条件下,求
面积的最大值.
同类题4
已知椭圆
的上顶点为
,离心率为
. 抛物线
截
轴所得的线段长为
的长半轴长.
(1)求椭圆
的方程;
(2)过原点的直线
与
相交于
两点,直线
分别与
相交于
两点
证明:以
为直径的圆经过点
;
记
和
的面积分别是
,求
的最小值.
同类题5
已知椭圆
(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)如图,
是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定直线