- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
=1(a>b>0)的离心率为
,其内接正方形的面积为4.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设M为椭圆C的右顶点,过点
且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:k1k2为定值.


(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设M为椭圆C的右顶点,过点

已知椭圆
过点
,
为椭圆上一点,椭圆在点
处的切线与直线
和右准线
分别交于点

(1)求椭圆的方程;
(2)
为椭圆的焦点,当点
在椭圆上移动时,请问
的值是否为定值,并说明理由.








(1)求椭圆的方程;
(2)



(本小题满分16分)设椭圆
的离心率为
,直线
与以原点为圆心、椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于不同的两点
,以线段
为直径作圆
.若圆
与
轴相交于不同的两点
,求
的面积;
(3)如图,
、
、
、
是椭圆
的顶点,
是椭圆
上除顶点外的任意点,直线
交
轴于点
,直线
交
于点
.设
的斜率为
,
的斜率为
,求证:
为定值.






(1)求椭圆

(2)设直线









(3)如图,



















已知焦点在x轴上的椭圆E:
,且离心率
,若
的顶点A,B在椭圆E上,C在直线l:y=x+2上,且AB∥l
(1)当AB边通过坐标原点时,求AB的长及
的面积
(2)当∠ABC=90°,且斜边AC的长度最大时,求AB边所在的直线方程



(1)当AB边通过坐标原点时,求AB的长及

(2)当∠ABC=90°,且斜边AC的长度最大时,求AB边所在的直线方程
在平面直角坐标系
中,已知椭圆
的左焦点为
,且经过点
.
(1)求椭圆的标准方程;
(2)已知椭圆的弦
过点
,且与
轴不垂直.若
为
轴上的一点,
,求
的值.





(1)求椭圆的标准方程;
(2)已知椭圆的弦







以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(1)求椭圆
及其“准圆”的方程;
(2)若椭圆
的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.










(1)求椭圆

(2)若椭圆







椭圆M:
的焦距为
,点
关于直线
的对称点在椭圆
上.

(1)求椭圆M的方程;
(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线
与椭圆M相交于两个不同的点C,D.
①求
的取值范围;
②当
与
相交于点Q时,试问:点Q的纵坐标是否是定值?若是,求出该定值;若不是,说明理由.






(1)求椭圆M的方程;
(2)如图,椭圆M的上、下顶点分别为A,B,过点P的直线

①求

②当


.本小题满分15分)
如图,已知椭圆E:
,焦点为
、
,双曲线

的顶点是该椭圆的焦点,设
是双曲线
上异于顶点的任一点,直线
、
与椭圆的交点分别为
和
,已知三角形
的周长等于
,椭圆四个顶点组成的菱形的面积为
.

(1)求椭圆
与双曲线
的方程;
(2)设直线
、
的斜率分别为
和
,探求
和
的关系;
(3)是否存在常数
,使得
恒成立?
若存在,试求出
的值;若不存在, 请说明理由.
如图,已知椭圆E:

















(1)求椭圆


(2)设直线






(3)是否存在常数


若存在,试求出

椭圆
与
的中心在原点,焦点分别在
轴与
轴上,它们有相同的离心率
,并且
的短轴为
的长轴,
与
的四个焦点构成的四边形面积是
.
(1)求椭圆
与
的方程;
(2)设
是椭圆
上非顶点的动点,
与椭圆
长轴两个顶点
,
的连线
,
分别与椭圆
交于
,
点.
(i)求证:直线
,
斜率之积为常数;
(ii)直线
与直线
的斜率之积是否为常数?若是,求出该值;若不是,说明理由.










(1)求椭圆


(2)设











(i)求证:直线


(ii)直线



在平面直角坐标系中,已知椭圆
的两个焦点分别是
,直线
与椭圆交于
两点.
(1)若
为椭圆短轴上的一个顶点,且
是直角三角形,求
的值;
(2)若
,且
是以
为直角顶点的直角三角形,求
与
满足的关系;
(3)若
,且
,求证:
的面积为定值.




(1)若



(2)若





(3)若


