- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
的离心率
,左、右焦点分别为
,抛物线
的焦点F恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)已知圆M:
的切线
与椭圆相交于A、B两点,那么以AB为直径的圆是否经过定点?如果是,求出定点的坐标;如果不是,请说明理由,




(1)求椭圆C的方程;
(2)已知圆M:


如图:椭圆
的顶点为
,左右焦点分别为
,
,

(1)求椭圆
的方程;
(2)过右焦点
的直线
与椭圆
相交于
两点,试探究在
轴上是否存在定点
,使得
为定值?若存在求出点
的坐标,若不存在请说明理由?






(1)求椭圆

(2)过右焦点








如图,
为坐标原点,椭圆
(
)的焦距等于其长半轴长,
为椭圆
的上、下顶点,且

(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于异于
的
两点,直线
交于点
.求证:点
的纵坐标为定值3.







(1)求椭圆

(2)过点








已知椭圆
的离心率为
,过椭圆的焦点且与长轴垂直的弦长为1.

(1)求椭圆
的方程;
(2)设点
为椭圆上位于第一象限内一动点,
分别为椭圆的左顶点和下顶点,直线
与
轴交于点
,直线
与轴交于点
,求证:四边形
的面积为定值.



(1)求椭圆

(2)设点








已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点.
①证明:直线
的斜率依次成等比数列.
②若
与
关于
轴对称,证明:
.




(1)求

(2)若斜率为








①证明:直线

②若




已知椭圆
:
的短轴长为
,离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
的左、右焦点分别为
、
,左、右顶点分别为
、
,点
、
为椭圆
上位于
轴上方的两点,且
,记直线
、
的斜率分别为
、
,若
,求直线
的方程.




(1)求椭圆

(2)设椭圆
















(本小题满分16分)
在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线
l:x=m+1与x轴的交点为B,BF2=m.

(1)已知点(,1)在椭圆C上,求实数m的值;
(2)已知定点A(-2,0).
①若椭圆C上存在点T,使得=,求椭圆C的离心率的取值范围;
②当m=1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,
若=λ,=m,求证:λ+m为定值.
在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线
l:x=m+1与x轴的交点为B,BF2=m.

(1)已知点(,1)在椭圆C上,求实数m的值;
(2)已知定点A(-2,0).
①若椭圆C上存在点T,使得=,求椭圆C的离心率的取值范围;
②当m=1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,
若=λ,=m,求证:λ+m为定值.
已知椭圆
两焦点分别为F1、F2、P是椭圆在第一象限弧上一点,并满足
,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点
(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.


(1)求P点坐标;
(2)求证直线AB的斜率为定值;
(3)求△PAB面积的最大值.

在平面直角坐标系xOy中,已知椭圆C:
的离心率为
,右准线方程为
.
求椭圆C的标准方程;
已知斜率存在且不为0的直线l与椭圆C交于A,B两点,且点A在第三象限内
为椭圆C的上顶点,记直线MA,MB的斜率分别为
,
.
若直线l经过原点,且
,求点A的坐标;
若直线l过点
,试探究
是否为定值?若是,请求出定值;若不是,请说明理由.












