- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
(a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点
在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为
的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.


(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为

如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.

(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.










(1)当直线



(2)①记直线



②求

如图所示,在平面直角坐标系
中,已知椭圆
:
(
),
,
,
,
是椭圆上的四个动点,且
,
,线段
与
交于椭圆
内一点
.当点
的坐标为
,且
,
分别为椭圆
的上顶点和右顶点重合时,四边形
的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:当点
,
,
,
在椭圆上运动时,
(
)是定值.




















(Ⅰ)求椭圆

(Ⅱ)证明:当点







已知椭圆
的中心在原点,焦点在
轴上,离心率等于
,它的一个顶点恰好在抛物线
的准线上.
(Ⅰ)求椭圆
的标准方程.
(Ⅱ)点
,
在椭圆上,
,
是椭圆上位于直线
两侧的动点.
(i)若直线
的斜率为
,求四边形
面积的最大值.
(ii)当
,
运动时,满足
,试问直线
的斜率是否为定值,请说明理由.




(Ⅰ)求椭圆

(Ⅱ)点





(i)若直线



(ii)当





如图,已知点
是椭圆
上的任意一点,直线
与椭圆交于
,
两点,直线
,
的斜率都存在.

(1)若直线
过原点,求证:
为定值;
(2)若直线
不过原点,且
,试探究
是否为定值.








(1)若直线


(2)若直线



已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点,证明:直线
,
,
的斜率依次成等比数列.




(1)求

(2)若斜率为











已知椭圆
的离心率为
,且过点
,直线
交椭圆
于不同的两点
,设线段
的中点为
.

(1)求椭圆
的方程;
(2)当
的面积为
(其中
为坐标原点)且
时,试问:在坐标平面上是否存在两个定点
,使得当直线
运动时,
为定值?若存在,求出点
的坐标和定值;若不存在,请说明理由.










(1)求椭圆

(2)当








已知椭圆
:
的离心率为
,三角形
的三个顶点都在椭圆
上,设它的三条边
、
、
的中点分别为
、
、
,且三条边所在直线的斜率分别
、
、
,且
、
、
均不为
.
为坐标原点,若直线
、
、
的斜率之和为
,则
______.
























已知椭圆T:
的离心率为
,右焦点为
,三角形
的三个顶点都在椭圆
上,设它的三条边
的中点分别为
,且三条边所在直线的斜率分别
、
、
,且
、
、
均不为
.
为坐标原点,若直线
的斜率之和为1,则
______
















