- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率
,且椭圆过点
(1)求椭圆
的标准方程;
(2)设直线
与
交于
、
两点,点
在椭圆
上,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.



(1)求椭圆

(2)设直线









已知
分别是椭圆
的左、右焦点,直线
与
交于
两点,
,且
.
(1)求
的方程;
(2)已知点
是
上的任意一点,不经过原点
的直线
与
交于
两点,直线
的斜率都存在,且
,求
的值.







(1)求

(2)已知点









已知椭圆
的离心率为
,且过点
.
(I)求椭圆的标准方程;
(II)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设
,满足
.
(i)试证
的值为定值,并求出此定值;
(ii)试求四边形ABCD面积的最大值.



(I)求椭圆的标准方程;
(II)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设


(i)试证

(ii)试求四边形ABCD面积的最大值.
已知椭圆
:
的左、右顶点分别为C、D,且过点
,P是椭圆上异于C、D的任意一点,直线PC,PD的斜率之积为
.
(1)求椭圆
的方程;
(2)O为坐标原点,设直线CP交定直线x = m于点M,当m为何值时,
为定值.




(1)求椭圆

(2)O为坐标原点,设直线CP交定直线x = m于点M,当m为何值时,

在椭圆
上任取一点
(
不为长轴端点),连结
、
,并延长与椭圆
分别交于点
、
两点,已知
的周长为8,
面积的最大值为
.
(1)求椭圆
的方程;
(2)设坐标原点为
,当
不是椭圆的顶点时,直线
和直线
的斜率之积是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.











(1)求椭圆

(2)设坐标原点为




已知椭圆
的左,右焦点分别是
,
,离心率为
,直线
被椭圆C截得的线段长为
.
(1)求椭圆C的方程;
(2)过点
且斜率为k的直线l交椭圆C于A,B两点,交x轴于P点,点A关于x轴的对称点为M,直线BM交x轴于Q点.求证:
(O为坐标原点)为常数.






(1)求椭圆C的方程;
(2)过点


已知椭圆E:
的左、右焦点分别为F1,F2,离心率为
,点A在椭圆E上,∠F1AF2=60°,△F1AF2的面积为4
.
(1)求椭圆E的方程;
(2)过原点O的两条互相垂直的射线与椭圆E分别交于P,Q两点,证明:点O到直线PQ的距离为定值,并求出这个定值.



(1)求椭圆E的方程;
(2)过原点O的两条互相垂直的射线与椭圆E分别交于P,Q两点,证明:点O到直线PQ的距离为定值,并求出这个定值.
已知椭圆
过点
,且离心率为
.
(1)求椭圆
的方程;
(2)设椭圆
在左、右顶点分别为
、
,左焦点为
,过
的直线
与
交于
、
两点(
和
均不在坐标轴上),直线
、
分别与
轴交于点
、
,直线
、
分别与
轴交于点
、
,求证:
为定值,并求出该定值.



(1)求椭圆

(2)设椭圆






















已知椭圆
的右焦点为
,点
在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)点
在圆
上,且
在第一象限,过
作
的切线交椭圆于
两点,问:
的周长是否为定值?若是,求出定值;若不是,说明理由.



(Ⅰ)求椭圆的方程;
(Ⅱ)点






