如图所示,已知ABC是长轴长为4的椭圆E上的三点,点A是长轴的一个端点,BC过椭圆中心O,且.

(Ⅰ)求椭圆E的方程;
(Ⅱ)设是以原点为圆心,短轴长为半径的圆,过椭圆E上异于其顶点的任一点P,作的两条切线,切点分别为MN,若直线MNx轴、y轴上的截距分别为mn,试计算的值是否为定值?如果是,请给予证明;如果不是,请说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
已知P是椭圆E上异于点的一点,E的离心率为,则直线APBP的斜率之积为 
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
已知椭圆,三角形的三个顶点都在椭圆上,设它的三边中点分别为,且三边所在直线的斜率分别为(均不为0),为坐标原点,若直线的斜率之和为1,则(   )
A.B.C.D.
当前题号:3 | 题型:单选题 | 难度:0.99
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.
当前题号:4 | 题型:解答题 | 难度:0.99
已知椭圆方程为
(1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;
(2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.
当前题号:5 | 题型:解答题 | 难度:0.99
已知的两个顶点的坐标分别为,且所在直线的斜率之积等于,记顶点的轨迹为.
(Ⅰ)求顶点的轨迹的方程;
(Ⅱ)若直线与曲线交于两点,点在曲线上,且的重心(为坐标原点),求证:的面积为定值,并求出该定值.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆的一个焦点为,离心率为.
(1)求的标准方程;
(2)若动点外一点,且的两条切线相互垂直,求的轨迹的方程;
(3)设的另一个焦点为,过上一点的切线与(2)所求轨迹交于点,,求证:.
当前题号:7 | 题型:解答题 | 难度:0.99
设椭圆,过点的直线分别交于不同的两点,直线恒过点
(1)证明:直线的斜率之和为定值;
(2)直线分别与轴相交于两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标,若不存在,请说明理由.
当前题号:8 | 题型:解答题 | 难度:0.99
已知圆心在轴上的圆与直线切于点.
(1)求圆的标准方程;
(2)已知,经过原点,且斜率为正数的直线与圆交于两点.
(ⅰ)求证:为定值;
(ⅱ)求的最大值.
当前题号:9 | 题型:解答题 | 难度:0.99
已知椭圆离心率为,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线与椭圆C交于PQ均在第一象限,直线OPOQ的斜率分别为,且(其中O为坐标原点).证明:直线l的斜率k为定值.
当前题号:10 | 题型:解答题 | 难度:0.99