刷题首页
题库
高中数学
题干
已知椭圆
E
:
的左、右焦点分别为
F
1
,
F
2
,离心率为
,点
A
在椭圆
E
上,∠
F
1
AF
2
=60°,△
F
1
AF
2
的面积为4
.
(1)求椭圆
E
的方程;
(2)过原点
O
的两条互相垂直的射线与椭圆
E
分别交于
P
,
Q
两点,证明:点
O
到直线
PQ
的距离为定值,并求出这个定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-22 11:12:21
答案(点此获取答案解析)
同类题1
设椭圆
的离心率,
右焦点到直线
的距离
为坐标原点.
(Ⅰ)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明:点
到直线
的距离为定值,并求弦
长度的最小值.
同类题2
已知椭圆
:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆
的方程;
(Ⅱ)已知
为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
同类题3
已知点
是椭圆
C
:
上的一点,椭圆
C
的离心率与双曲线
的离心率互为倒数,斜率为
直线
l
交椭圆
C
于
B
,
D
两点,且
A
、
B
、
D
三点互不重合.
(1)求椭圆
C
的方程;
(2)若
分别为直线
AB
,
AD
的斜率,求证:
为定值.
同类题4
已知椭圆
的左、右焦点分别为
,
,离心率为
,过右焦点
作直线
交椭圆
于
,
两点,
的周长为
,点
.
(1)求椭圆
的方程;
(2)设直线
、
的斜率
,
,请问
是否为定值?若是定值,求出其定值;若不是,说明理由.
同类题5
已知椭圆
的离心率为
,
,
,
,
的面积为
.
(1)求椭圆
的方程;
(2)过右焦点
作与
轴不重合的直线
交椭圆
于
,
两点,连接
,
分别交直线
于,
,
两点,若直线
,
的斜率分别为
,
,试问:
是否为定值?若是,求出该定值,若不是,请说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题