- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,椭圆C的方程为
,左、右焦点分别为
,
,设Q为椭圆C上位于x轴上方的一点,且
轴,M、N为椭圆C上不同于Q的两点,且
,则直线
的斜率为______.







已知椭圆
,
为椭圆与
轴的一个交点,过原点
的直线交椭圆于
两点,且
,
.
(1)求此椭圆的方程;
(2)若
为椭圆上的点且
的横坐标
,试判断
是否为定值?若是定值,求出该定值;若不是定值,请说明理由.








(1)求此椭圆的方程;
(2)若





已知直线
过椭圆
的右焦点
,抛物线
的焦点为椭圆
的上顶点,且
交椭圆
于
两点,点
在直线
上的射影依次为
.
(1)求椭圆
的方程;
(2)若直线
交
轴于点
,且
,当
变化时,证明:
为定值;
(3)当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.











(1)求椭圆

(2)若直线






(3)当



已知椭圆
:
的长轴长是离心率的两倍,直线
:
交
于
,
两点,且
的中点横坐标为
.
(1)求椭圆C的方程;
(2)若
,
是椭圆
上的点,
为坐标原点,且满足
,求证:
,
斜率的平方之积是定值.









(1)求椭圆C的方程;
(2)若







已知椭圆C:
(
)的焦距为
,直线l:
与椭圆交于A,B两点,点A在第一象限,且
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线
,且
交椭圆C于P、Q两点,求证:直线
、
与x轴围成一个等腰三角形.





(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线




记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆
,以椭圆E的焦点为顶点作相似椭圆M.

(1)求椭圆M的方程;
(2)设直线l与椭圆
交于
两点,且与椭圆
仅有一个公共点,试判断
的面积是否为定值(
为坐标原点)?若是,求出该定值;若不是,请说明理由.


(1)求椭圆M的方程;
(2)设直线l与椭圆





已知椭圆
:
的离心率
,且圆
过椭圆
的上,下顶点.
(1)求椭圆
的方程.
(2)若直线
的斜率为
,且直线
交椭圆
于
、
两点,点
关于点的对称点为
,点
是椭圆
上一点,判断直线
与
的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.





(1)求椭圆

(2)若直线












已知椭圆
的左右两焦点分别为
、
.
(1)若矩形
的边
在
轴上,点
、
均在
上,求该矩形绕
轴旋转一周所得圆柱侧面积
的取值范围;
(2)设斜率为
的直线
与
交于
、
两点,线段
的中点为
(
),求证:
;
(3)过
上一动点
作直线
,其中
,过
作直线
的垂线交
轴于点
,问是否存在实数
,使得
恒成立,若存在,求出
的值,若不存在,说明理由.



(1)若矩形








(2)设斜率为









(3)过










