- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.



(1)求椭圆

(2)斜率为








(3)若直线











已知椭圆
,其左右顶点分别为
,
,上下顶点分别为
,
.圆
是以线段
为直径的圆.
(1)求圆
的方程;
(2)若点
,
是椭圆上关于
轴对称的两个不同的点,直线
,
分别交
轴于点
、
,求证:
为定值;
(3)若点
是椭圆Γ上不同于点
的点,直线
与圆
的另一个交点为
.是否存在点
,使得
?若存在,求出点
的坐标,若不存在,说明理由.







(1)求圆

(2)若点









(3)若点








已知椭圆
的右焦点为
,且点
在椭圆
上.
(1)求椭圆
的标准方程;
(2)当点
在椭圆
的图像上运动时,点
在曲线
上运动,求曲线
的轨迹方程,并指出该曲线是什么图形;
(3)过椭圆
上异于其顶点的任意一点
作曲线
的两条切线,切点分别为
不在坐标轴上),若直线
在
轴,
轴上的截距分别为
试问:
是否为定值?若是,求出该定值;若不是,请说明理由.




(1)求椭圆

(2)当点





(3)过椭圆









已知椭圆
:
(
)的左右焦点分别为
,
,点
在椭圆
上,且
.
(1)求椭圆的方程;
(2)点P,Q在椭圆
上,O为坐标原点,且直线
,
的斜率之积为
,求证:
为定值;
(3)直线l过点
且与椭圆
交于A,B两点,问在x轴上是否存在定点M,使得
为常数?若存在,求出点M坐标以及此常数的值;若不存在,请说明理由.








(1)求椭圆的方程;
(2)点P,Q在椭圆





(3)直线l过点



在平面直角坐标系中,以坐标原点为中心,以坐标轴为对称轴的椭圆C经过点M(2,1),N(
,-
).
(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.


(1)求椭圆C的标准方程;
(2)经过点M作倾斜角互补的两条直线,分别与椭圆C相交于异于M点的A,B两点,求直线AB的斜率.
已知椭圆C:
1(a>b>0)的左、右焦点分别为F1,F2,离心率为
,A为椭圆C上一点,且AF2⊥F1F2,且|AF2|
.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究
•
是否为定值,并说明理由.



(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过A1,A2分别作x轴的垂线 l1,l2,椭圆C的一条切线l:y=kx+m(k≠0)与l1,l2交于M,N两点,试探究


在平面直角坐标系xOy中,曲线C上的点
到点
的距离与它到直线
的距离之比为
,圆O的方程为
,曲线C与x轴的正半轴的交点为A,过原点O且异于坐标轴的直线与曲线C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中
,设直线AB,AC的斜率分别为
;
(1)求曲线C的方程,并证明
到点M的距离
;
(2)求
的值;
(3)记直线PQ,BC的斜率分别为
、
,是否存在常数
,使得
?若存在,求
的值,若不存在,说明理由.








(1)求曲线C的方程,并证明


(2)求

(3)记直线PQ,BC的斜率分别为





已知椭圆
的长轴长是短轴长的两倍,焦距为
.

(1)求椭圆
的标准方程;
(2)设
是四条直线
所围成的两个顶点,
是椭圆
上的任意一点,若
,求证:动点
在定圆上运动.




(1)求椭圆

(2)设






设椭圆
的左焦点为
,上顶点为
.已知椭圆的短轴长为4,离心率为
.
(1)求椭圆的方程;
(2)设点
在椭圆上,且异于椭圆的上、下顶点,点
为直线
与
轴的交点,点
在
轴的负半轴上.若
(
为原点),且
,求证:直线
的斜率与直线MN的斜率之积为定值.




(1)求椭圆的方程;
(2)设点









