- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知动点
到定点
的距离之和为4.
(1)求动点
的轨迹方程
(2)若轨迹
与直线
交于
两点,且
求
的值.
(3)若点
与点
在轨迹
上,且点
在第一象限,点
在第二象限,点
与点
关于原点对称,求证:当
时,三角形
的面积为定值.


(1)求动点


(2)若轨迹





(3)若点









已知椭圆
的焦点为
,
,离心率为
,点P为椭圆C上一动点,且
的面积最大值为
,O为坐标原点.
(1)求椭圆C的方程;
(2)设点
,
为椭圆C上的两个动点,当
为多少时,点O到直线MN的距离为定值.






(1)求椭圆C的方程;
(2)设点



已知椭圆
:
的离心率为
,
为椭圆
上一点.
(1)求椭圆
的方程;
(2)过点
的直线
交椭圆
于
,
两点,直线
与直线
相交于点
,求证:直线
,
,
的斜率成等差数列.






(1)求椭圆

(2)过点











已知
为椭圆
上的动点,
轴于
,
为
的中点,设点
的轨迹为
.
(1)求曲线
的方程;
(2)若点
,直线
与曲线
交于
,
两点,与椭圆
交于
,
两点,问是否存在与
无关的实数
,使得
成立,若存在求出
的值;若不存在请说明理由(
,
,
,
分别表示直线
,
,
,
的斜率).








(1)求曲线

(2)若点




















已知椭圆
的一个焦点与抛物线
的焦点重合,且抛物线的准线被椭圆
截得的弦长为1,
是直线
上一点,过点
且与
垂直的直线交椭圆于
两点.

(1)求椭圆
的标准方程;
(2)设直线
的斜率分别为
,求证:
成等差数列.









(1)求椭圆

(2)设直线



如图,已知
,
为椭圆
短轴的两个端点,且椭圆的离心率为
.

(1)求椭圆
的方程;
(2)若经过点
的直线
与椭圆
的另一个交点记为
,经过原点
且与
垂直的直线记为
,且直线
与直线
的交点记为
,证明:
是定值,并求出这个定值.





(1)求椭圆

(2)若经过点











己知A,B分别为椭圆C:
(a>b>0)的左右顶点,P为椭圆C上异于A,B的任意一点,O为坐标原点,
•
=﹣4,△PAB的面积的最大值为
.
(1)求椭圆C的方程;
(2)若椭圆C上存在两点M,N,分别满足OM∥PA,ON∥PB,求|OM|•|ON|的最大值.




(1)求椭圆C的方程;
(2)若椭圆C上存在两点M,N,分别满足OM∥PA,ON∥PB,求|OM|•|ON|的最大值.
己知A,B分别为椭圆C:
(a>b>0)的左右顶点,P为椭圆C上异于A,B的任意一点,O为坐标原点,
•
=﹣4,△PAB的面积的最大值为
.
(1)求椭圆C的方程;
(2)若椭圆C上存在两点M,N,分别满足OM∥PA,ON∥PB,求|OM|•|ON|的最大值.




(1)求椭圆C的方程;
(2)若椭圆C上存在两点M,N,分别满足OM∥PA,ON∥PB,求|OM|•|ON|的最大值.
已知椭圆
的左、右焦点
、
,
是椭圆上任意一点,若以坐标原点为圆心,椭圆短轴长为直径的圆恰好经过椭圆的焦点,且△
的周长为
.
(1)求椭圆
的方程;
(2)设直线
是圆
的切线,
与椭圆
交与不同的两点
,
,证明:
的大小为定值.






(1)求椭圆

(2)设直线






