- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系xOy中,O为坐标原点,点
,
,Q为平面上的动点,且
,线段
的中垂线与线段
交于点P.
求
的值,并求动点P的轨迹E的方程;
若直线l与曲线E相交于A,B两点,且存在点
其中A,B,D不共线
,使得
,证明:直线l过定点.











已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.






(1)求点

(2)设点











在平面直角坐标系
中,
,
为
,
轴上两个动点,点
在直线
上,且满足
,
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,
为曲线
与
正半轴的交点,
、
为曲线
上与
不重合的两点,且直线
与直线
的斜率之积为
,试探究
面积的最大值.









(1)求点

(2)记点













设
为坐标原点,动点
在椭圆
:
上,该椭圆的左顶点
到直线
的距离为
.
(1)求椭圆
的标准方程;
(2)若椭圆
外一点
满足,
平行于
轴,
,动点
在直线
上,满足
.设过点
且垂直
的直线
,试问直线
是否过定点?若过定点,请写出该定点,若不过定点请说明理由.







(1)求椭圆

(2)若椭圆












如图,已知椭圆
:
的左右顶点分别为A,B,过点
的直线与椭圆
交于C,D两点
异于A,
,直线AC与BD交于点P,直线AD与BC交于点Q.

Ⅰ
设直线CA的斜率为
,直线CB的斜率为
,求
的值;
Ⅱ
证明:直线PQ为定直线,并求该定直线的方程;
Ⅲ
求
面积的最小值.

















已知椭圆
过点
,其长轴、焦距和短轴的长的平方依次成等差数列
直线l与x轴正半轴和y轴分别交于点Q、P,与椭圆分别交于点M、N,各点均不重合且满足
.
求椭圆的标准方程;
若
,试证明:直线l过定点并求此定点.







已知椭圆
的离心率为
,抛物线
的准线被椭圆
截得的线段长为
.
(1)求椭圆
的方程;
(2)如图,点
分别是椭圆
的左顶点、左焦点直线
与椭圆
交于不同的两点
(
都在
轴上方).且
.证明:直线
过定点,并求出该定点的坐标.





(1)求椭圆

(2)如图,点










已知椭圆
:
与抛物线
有共同的焦点,且椭圆
的一个焦点和短轴的两个顶点的连线构成等边三角形.
(1)求椭圆
的标准方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.




(1)求椭圆

(2)已知过椭圆









(3)在(2)的条件下求

已知椭圆
的右焦点为
,过点
的直线交椭圆于
两点且
的中点坐标为
.
(1)求
的方程;
(2)设直线不经过点
且与
相交于
两点,若直线
与直线
的斜率的和为l,试判断直线,是否经过定点,若经过定点,请求出该定点;若不经过定点,请给出理由.






(1)求

(2)设直线不经过点





如图,在平面直角坐标系中,已知点
,过直线
左侧的动点
作
于点
的角平分线交
轴于点
,且
,记动点
的轨迹为曲线
.

(1)求曲线
的方程;
(2)过点
作直线
交曲线
于
两点,点
在
上,且
轴,试问:直线
是否恒过定点?请说明理由.











(1)求曲线

(2)过点







