刷题首页
题库
高中数学
题干
已知椭圆
:
与抛物线
有共同的焦点,且椭圆
的一个焦点和短轴的两个顶点的连线构成等边三角形.
(1)求椭圆
的标准方程;
(2)已知过椭圆
的左顶点
的两条直线
,
分别交椭圆
于
,
两点,且
,求证:直线
过定点,并求出定点坐标;
(3)在(2)的条件下求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-08 04:38:47
答案(点此获取答案解析)
同类题1
已知椭圆
过圆
的圆心
,且右焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)过点
作直线
交椭圆
于
,
两点,若
,求直线
的方程.
同类题2
已知椭圆与双曲线
有相同的焦点坐标,且点
在椭圆上.
(1)求椭圆的标准方程;
(2)设
A
、
B
分别是椭圆的左、右顶点,动点
M
满足
,垂足为
B
,连接
AM
交椭圆于点
P
(异于
A
),则是否存在定点
T
,使得以线段
MP
为直径的圆恒过直线
BP
与
MT
的交点
Q
,若存在,求出点
T
的坐标;若不存在,请说明理由.
同类题3
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
).
求证:点
总在某定直线上.
同类题4
给定椭圆
C
:
,称圆心在原点,半径为
的圆是椭圆
C
的“伴随圆”.若椭圆
C
的一个焦点为
F
1(
, 0) ,其短轴上的一个端点到
F
1 的距离为
(1)求椭圆
C
的方程及其“伴随圆”方程;
(2)若倾斜角 45°的直线
l
与椭圆
C
只有一个公共点,且与椭圆
C
的伴随圆相交于
M
.
N
两点,求弦
MN
的的长;
(3)点
P
是椭圆
C
的伴随圆上一个动点,过点
P
作直线
l
1
、
l
2
,使得
l
1
、
l
2
与椭圆
C
都只有一个公共点,判断
l
1
、
l
2
的位置关系,并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求直线与椭圆的交点坐标