刷题首页
题库
高中数学
题干
在平面直角坐标系
中,
,
为
,
轴上两个动点,点
在直线
上,且满足
,
.
(1)求点
的轨迹方程;
(2)记点
的轨迹为曲线
,
为曲线
与
正半轴的交点,
、
为曲线
上与
不重合的两点,且直线
与直线
的斜率之积为
,试探究
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-13 02:12:00
答案(点此获取答案解析)
同类题1
已知
为椭圆
上的动点,
轴于
,
为
的中点,设点
的轨迹为
.
(1)求曲线
的方程;
(2)若点
,直线
与曲线
交于
,
两点,与椭圆
交于
,
两点,问是否存在与
无关的实数
,使得
成立,若存在求出
的值;若不存在请说明理由(
,
,
,
分别表示直线
,
,
,
的斜率).
同类题2
已知圆
M
:(
x
+
m
)
2
+
y
2
=4
n
2
(
m
,
n
>0且
m
≠
n
),点
N
(
m
,0),
P
是圆
M
上的动点,线段
PN
的垂直平分线交直线
PM
于点
Q
,点
Q
的轨迹为曲线
C
.
(1)讨论曲线
C
的形状,并求其方程;
(2)若
m
=1,且△
QMN
面积的最大值为
.直线
l
过点
N
且不垂直于坐标轴,
l
与曲线
C
交于
A
,
B
,点
B
关于
x
轴的对称点为
D
.求证:直线
AD
过定点,并求出该定点的坐标.
同类题3
已知在
中,点
,点
,若
,则点
的轨迹方程为( )
A.
B.
C.
D.
同类题4
已知椭圆
的短轴顶点分别为
,且短轴长为
为椭圆上异于
的任意-一点,直线
的斜率之积为
(1)求椭圆
的方程;
(2)设
为坐标原点,圆
的切线
与椭圆
C
相交于
两点,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
轨迹问题——椭圆
椭圆中的直线过定点问题