- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆中的弦长
- 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(Ⅰ)一动圆与圆
相外切,与圆
相内切求动圆圆心的轨迹曲线
的方程,并说明它是什么曲线;
(Ⅱ)过点
作一直线
与曲线
交与
两点,若
,求此时直线
的方程.



(Ⅱ)过点






如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.
(1)求证:|EA|+|EB|为定值;
(2)设直线l交直线x=4于点Q,证明:|EB|•|FQ|=|BF•|EQ|.

已知椭圆
:
的离心率为
,圆
:
与
轴交于点
、
,
为椭圆
上的动点,
,
面积最大值为
.
(1)求圆
与椭圆
的方程;
(2)圆
的切线
交椭圆于点
、
,求
的取值范围.













(1)求圆


(2)圆





已知椭圆
的焦距为
,离心率为
,圆
,
是椭圆的左右顶点,
是圆
的任意一条直径,
面积的最大值为2.
(1)求椭圆
及圆
的方程;
(2)若
为圆
的任意一条切线,
与椭圆
交于两点
,求
的取直范围.








(1)求椭圆


(2)若






已知
是椭圆
的两个焦点,
为坐标原点,点
在椭圆上,且
,
是以
为直径的圆,直线
与
相切,并且与椭圆交于不同的两点
.
(1) 求椭圆的标准方程;
(2) 当
,且满足
时,求弦长
的取值范围.










(1) 求椭圆的标准方程;
(2) 当




如图,已知圆
的方程为
,圆
的方程为
,若动圆
与圆
内切与圆
外切.

求动圆圆心
的轨迹
的方程;
过直线
上的点
作圆
的两条切线,设切点分别是
,若直线
与轨迹
交于
两点,求
的最小值.



















