已知椭圆的离心率为,其左、右焦点分别为,左、右顶点分别为,上、下顶点分别为,四边形的面积为4.
(1)求椭圆的方程;
(2)直线与椭圆交于两点,(其中为坐标原点),求直线被以线段为直径的圆截得的弦长.
当前题号:1 | 题型:解答题 | 难度:0.99
在平面直角坐标系中,点到两圆的圆心的距离之和等于4,其中.设点的轨迹为.
(1)求的方程;
(2)设直线交于两点.问为何值时?此时的值是多少?
当前题号:2 | 题型:解答题 | 难度:0.99
如图,曲线是以原点O为中心、为焦点的椭圆的一部分,曲线是以O为顶点、为焦点的抛物线的一部分,A是曲线的交点
为钝角.

(1)求曲线的方程;
(2)过作一条与轴不垂直的直线,分别与曲线依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问是否为定值?若是求出定值;若不是说明理由.
当前题号:3 | 题型:解答题 | 难度:0.99
己知椭圆C:的左右焦点分别为F1,F2,直线l:y=kx+m与椭圆C交于A,B两点.O为坐标原点.
(1)若直线l过点F1,且|AB|=,求k的值;
(2)若以AB为直径的圆过原点O,试探究点O到直线AB的距离是否为定值?若是,求出该定值;若不是,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
如图,直线交椭圆两点,点是线段的中点,连接并延长交椭圆于点.

(1)设直线的斜率为,求的值;
(2)若,求面积的最大值.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆E:的焦距为2,一条准线方程为x=,A,B分别为椭圆的右顶点和上顶点,点P,Q在的椭圆上,且点P在第一象限.
(1)求椭圆E的标准方程;
(2)若点P,Q关于坐标原点对称,且PQ⊥AB,求四边形ABCD的面积;
(3)若AP,BQ的斜率互为相反数,求证:PQ斜率为定值.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,上顶点为,离心率为,且
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知为坐标原点,过点的直线与椭圆交于两点,点在椭圆上,若,试判断是否为定值?若是,求出该定值;若不是,请说明理由.
当前题号:7 | 题型:解答题 | 难度:0.99
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(Ⅰ)求C的方程;
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
当前题号:8 | 题型:解答题 | 难度:0.99
椭圆以双曲线的实轴为短轴、虚轴为长轴,且与抛物线交于两点.
(1)求椭圆的方程及线段的长;
(2)在图像的公共区域内,是否存在一点,使得的弦的弦相互垂直平分于点?若存在,求点坐标,若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
.本小题满分15分)
如图,已知椭圆E,焦点为,双曲线 的顶点是该椭圆的焦点,设是双曲线上异于顶点的任一点,直线与椭圆的交点分别为,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为.

(1)求椭圆与双曲线的方程;
(2)设直线的斜率分别为,探求
的关系;
(3)是否存在常数,使得恒成立?
若存在,试求出的值;若不存在, 请说明理由.
当前题号:10 | 题型:解答题 | 难度:0.99