- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆中的弦长
- 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆E:
(
)过点
,且它的右焦点为
.
(1)求椭圆E的方程;
(2)过A且倾斜角互补的两直线分别交椭圆E于点B、C(不同于点A),且
,求直线AB的方程.




(1)求椭圆E的方程;
(2)过A且倾斜角互补的两直线分别交椭圆E于点B、C(不同于点A),且

已知在平面直角坐标系
中,中心在原点,焦点在y轴上的椭圆C与椭圆
的离心率相同,且椭圆C短轴的顶点与椭圆E长轴的顶点重合.
(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求
的最大值.


(1)求椭圆C的方程;
(2)若直线l与椭圆E有且仅有一个公共点,且与椭圆C交于不同两点A,B,求

已知椭圆C的中心在原点,焦点在
轴上,长轴长是短轴长的
倍且经过点M
(Ⅰ)求椭圆C的方程
(Ⅱ)过圆
上的任一点作圆的一条切线交椭圆C与A、B两点
①求证:
②求|AB|的取值范围



(Ⅰ)求椭圆C的方程
(Ⅱ)过圆

①求证:

②求|AB|的取值范围
设
分别是椭圆
的左、右焦点,过
作倾斜角为
的直线交椭圆
于
两点,
到直线
的距离为
,连接椭圆
的四个顶点得到的菱形面积为
.
(1)求椭圆
的方程;
(2)设过点
的直线
被椭圆
和圆
所截得的弦长分别为
,当
最大时,求直线
的方程.











(1)求椭圆

(2)设过点







教材曾有介绍:圆
上的点
处的切线方程为
.我们将其结论推广:椭圆
上的点
处的切线方程为
,在解本题时可以直接应用.已知,直线
与椭圆
有且只有一个公共点.

(1)求
的值
(2)设
为坐标原点,过椭圆
上的两点
分别作该椭圆的两条切线
,且
与
交于点
.当
变化时,求
面积的最大值.









(1)求

(2)设









设F1,F2分别是椭圆
的左、右焦点,过
的直线
与
相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线
的斜率为1,求实数
的值.




(1)求|AB|;
(2)若直线

