- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆中的弦长
- 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
圆
的方程为:
,
为圆上任意一点,过
作
轴的垂线,垂足为
,点
在
上,且
.
(1)求点
的轨迹
的方程;
(2)过点
的直线与曲线
交于
、
两点,点
的坐标为
,
的面积为
,求
的最大值,及直线
的方程.









(1)求点


(2)过点










设A、B是椭圆
上的两点,点
是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.
(1)求直线AB的方程;
(2)判断A、B、C、D四点是否在同一个圆上?若是求出圆的方程,若不是说明理由.


(1)求直线AB的方程;
(2)判断A、B、C、D四点是否在同一个圆上?若是求出圆的方程,若不是说明理由.
若中心在原点的椭圆
与双曲线
有共同的焦点,且它们的离心率互为倒数,圆
的直径是椭圆
的长轴,C是椭圆的上顶点,动直线AB过C点且与圆
交于A、B两点,CD垂直于AB交椭圆于点





A.![]() (1)求椭圆 ![]() (2)求 ![]() |
如图,设椭圆
(a>1).

(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.


(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
已知椭圆
的左、右焦点分别为
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
两点,与椭圆
交于
两点,且
,当
取得最小值时,求直线
的方程并求此时
的值.





(1)求椭圆

(2)设斜率为









