- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 求椭圆中的弦长
- 椭圆中三角形(四边形)的面积
- 椭圆中的通径问题
- 椭圆的焦半径与焦点弦问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的两个焦点分别为
,
,离心率为
,且过点
.
(
)求椭圆
的标准方程.
(
)
、
、
、
是椭圆
上的四个不同的点,两条都不和
轴垂直的直线
和
分别过点
,
,且这条直线互相垂直,求证:
为定值.





(


(












已知椭圆
:
的右焦点为
,过点
的两条互相垂直的直线
,
,
与椭圆
相交于点
,
,
与椭圆
相交于点
,
,则下列叙述正确的是___________
存在直线
,
使得
值为7 存在直线
.
使得
为
弦长
存在最大值,且最大值为4 ④弦长
不存在最小值














存在直线







弦长


已知椭圆系方程
:
(
,
),
是椭圆
的焦点,
是椭圆
上一点,且
.
(1)求
的方程;
(2)
为椭圆
上任意一点,过
且与椭圆
相切的直线
与椭圆
交于
,
两点,点
关于原点的对称点为
,求证:
的面积为定值,并求出这个定值.









(1)求

(2)












已知椭圆
的离心率为
,若椭圆与圆
:
相交于M,N两点,且圆E在椭圆内的弧长为
.
(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:
为定值.





(1)求椭圆的方程;
(2)过椭圆的上焦点作两条相互垂直的直线,分别交椭圆于A,B、C,D,求证:

把半椭圆
(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=
,扇形FB1A1B2的面积为
.
(1)求a,c的值;
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.
-



(1)求a,c的值;
(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;
(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.
-

已知椭圆
的左、右焦点分别是
,
,其离心率为
,点
是椭圆
上任一点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)若斜率不为0的直线与椭圆
相交于
,
两个不同点,且
是平行四边形,证明:四边形
的面积为定值.









(1)求椭圆

(2)若斜率不为0的直线与椭圆





已知椭圆
的左、右焦点分别为,点
是椭圆
上的一个动点,
的周长为6,且存在点
使得,
为正三角形.
(1)求椭圆
的方程;
(2)若
是椭圆
上不重合的四个点,
与
相交于点
,且
.若
的斜率为
,求四边形
的面积.






(1)求椭圆

(2)若









已知点
在椭圆
上,椭圆的离心率为
.
(1)求椭圆的方程;
(2)过椭圆的左焦点作直线
,
分别交椭圆于
,
和
,
,且两条直线的斜率乘积为1,是否存在常数
使得
?若存在,求出
的值;若不存在,说明理由.




(1)求椭圆的方程;
(2)过椭圆的左焦点作直线








