已知椭圆:的左、右点分别为在椭圆上,且
(1)求椭圆的方程;
(2)过点(1,0)作斜率为的直线交椭圆于M、N两点,若求直线的方程;
(3)点P、Q为椭圆上的两个动点,为坐标原点,若直线的斜率之积为求证:为定值.
当前题号:1 | 题型:解答题 | 难度:0.99
已知直线与焦点在轴上的椭圆总有公共点,则的取值范围是(   )
A.B.C.D.
当前题号:2 | 题型:单选题 | 难度:0.99
曲线的右焦点分别为,短袖长为,点在曲线上,直线上,且.

(1)求曲线的标准方程;
(2)试通过计算判断直线与曲线公共点的个数.
(3)若点在都在以线段为直径的圆上,且,试求的取值范围.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,以椭圆)的右焦点为圆心,为半径作圆(其中为已知椭圆的半焦距),过椭圆上一点作此圆的切线,切点为.

(1)若为椭圆的右顶点,求切线长
(2)设圆轴的右交点为,过点作斜率为)的直线与椭圆相交于两点,若恒成立,且.求:
(ⅰ)的取值范围;
(ⅱ)直线被圆所截得弦长的最大值.
当前题号:4 | 题型:解答题 | 难度:0.99
如图所示,已知椭圆 过点,离心率为,左、右焦点分别为,点为直线上且不在轴上的任意一点,直线与椭圆的交点分别为为坐标原点.

(1)求椭圆的标准方程;
(2)设直线的斜线分别为.
(i)证明:
(ii)问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由.
当前题号:5 | 题型:解答题 | 难度:0.99
已知椭圆C=1(a>b>0)的一个焦点是F(1,0),且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆CMN两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.
当前题号:6 | 题型:解答题 | 难度:0.99
已知椭圆右焦点为,右顶点为,点在椭圆上,且轴,直线轴于点,若
(1)求椭圆的离心率;
(2)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且. 求椭圆的方程.
当前题号:7 | 题型:解答题 | 难度:0.99
已知椭圆的长轴长为4,且椭圆与圆:
的公共弦长为.
(1)求椭圆的方程
(2)椭圆的左右两个顶点分别为,直线与椭圆交于两点,且满足,求的值.
当前题号:8 | 题型:解答题 | 难度:0.99
已知椭圆的左、右焦点分别为,点在椭圆上.
)求椭圆的标准方程.
)是否存在斜率为的直线,使得当直线与椭圆有两个不同交点时,能在直线上找到一点,在椭圆上找到一点,满足?若存在,求出直线的方程;若不存在,说明理由.
当前题号:9 | 题型:解答题 | 难度:0.99
已知两点,给出下列曲线方程:(1);(2);(3);(4),在曲线上存在点满足的所有曲线是(   )
A.(1)(2)(3)(4)B.(2)(3)
C.(1)(4)D.(2)(3)(4)
当前题号:10 | 题型:单选题 | 难度:0.99