- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).

(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.









(1)当


(2)当





如图,已知椭圆
:
的离心率为
,
的左顶点为
,上顶点为
,点
在椭圆上,且
的周长为
.

(Ⅰ)求椭圆的方程;
(Ⅱ)设
是椭圆
上两不同点,
,直线
与
轴,
轴分别交于
两点,且
,求
的取值范围.










(Ⅰ)求椭圆的方程;
(Ⅱ)设









已知椭圆C1:
y2=1的左右顶点是双曲线C2:
的顶点,且椭圆C1的上顶点到双曲线C2的渐近线的距离为
.
(1)求双曲线C2的方程;
(2)若直线与C1相交于M1,M2两点,与C2相交于Q1,Q2两点,且
•
5,求|M1M2|的取值范围.



(1)求双曲线C2的方程;
(2)若直线与C1相交于M1,M2两点,与C2相交于Q1,Q2两点,且


已知在平面直角坐标系
中,椭圆
:
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过右焦点
作一条不与坐标轴平行的直线
,若
交椭圆
与
、
两点,点
关于原点
的对称点为
,求
的面积的取值范围.




(1)求椭圆

(2)过右焦点










已知圆
:
,点
,
.
(1)若线段
的中垂线与圆
相切,求实数
的值;
(2)过直线
上的点
引圆
的两条切线,切点为
,若
,则称点
为“好点”. 若直线
上有且只有两个“好点”,求实数
的取值范围.




(1)若线段



(2)过直线








设椭圆C:
的两个焦点是
和
,且椭圆C与圆
有公共点.
(1)求实数a的取值范围;
(2)若椭圆C上的点到焦点的最短距离为
,求椭圆C的方程;
(3)对(2)中的椭圆C,直线l:
与C交于不同的两点M、N,若线段MN的垂直平分线恒过点
,求实数m的取值范围.




(1)求实数a的取值范围;
(2)若椭圆C上的点到焦点的最短距离为

(3)对(2)中的椭圆C,直线l:


动圆M与圆F1:x2+y2+6x+5=0外切,同时与圆F2:x2+y2﹣6x﹣91=0内切.
(1)求动圆圆心M的轨迹方程E,并说明它是什么曲线;
(2)若直线y
x+m与(1)中的轨迹E有两个不同的交点,求m的取值范围.
(1)求动圆圆心M的轨迹方程E,并说明它是什么曲线;
(2)若直线y

已知动直线
垂直于
轴,与椭圆
交于
两点,点
在直线
上,
.
(1)求点
的轨迹
的方程;
(2)直线
与椭圆
相交于
,与曲线
相切于点
,
为坐标原点,求
的取值范围.







(1)求点


(2)直线






