- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 求直线与椭圆的交点坐标
- 讨论椭圆与直线的位置关系
- 求椭圆的切线方程
- + 根据直线与椭圆的位置关系求参数或范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
,
分别是椭圆
的左、右焦点,离心率
,过点
的直线交椭圆
于
,
两点,
的周长为8.
(1)求椭圆
的标准方程;
(2)设
,
是直线
上的不同两点,若
,求
的最小值.










(1)求椭圆

(2)设





已知椭圆
:
过点
,且
到两焦点的距离之和为
.
(1)求椭圆
的方程;
(2)已知不经过原点
的直线
交椭圆
于
、
两点,线段
的中点在直线
上,求
的取值范围.






(1)求椭圆

(2)已知不经过原点








在以
为圆心,6为半径的圆
内有一点
,点
为圆
上的任意一点,线段
的垂直平分线
和半径
交于点
.
(1)判断点
的轨迹是什么曲线,并求其方程;
(2)记点
的轨迹为曲线
,过点
的直线与曲线
交于
,
两点,求
的最大值;
(3)在圆
上的任取一点
,作曲线
的两条切线,切点分别为
、
,试判断
与
是否垂直,并给出证明过程.









(1)判断点

(2)记点







(3)在圆






