刷题首页
题库
高中数学
题干
已知椭圆
的左、右焦点分别为
,
,点
在椭圆
上.
(
)求椭圆
的标准方程.
(
)是否存在斜率为
的直线
,使得当直线
与椭圆
有两个不同交点
,
时,能在直线
上找到一点
,在椭圆
上找到一点
,满足
?若存在,求出直线
的方程;若不存在,说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-25 10:39:39
答案(点此获取答案解析)
同类题1
设抛物线
的焦点为
,经过点
的动直线
交抛物线
于点
且
.
(1)求抛物线的方程;
(2)若
为坐标原点),且点
在抛物线
上,求直线
斜率;
(3)若点M是抛物线
的准线上的一点,直线MF,MA,MB斜率分别为
.求证:当
为定值时,
也为定值.
同类题2
已知椭圆
的左右焦点为
,
是椭圆上半部分的动点,连接
和长轴的左右两个端点所得两直线交
正半轴于
两点(点
在
的上方或重合).
(1)当
面积
最大时,求椭圆的方程;
(2)当
时,在
轴上是否存在点
使得
为定值,若存在,求
点的坐标,若不存在,说明理由.
同类题3
双曲线
:
(
,
)的焦点为
、
,抛物线
:
的准线与
交于
、
两点,且以
为直径的圆过
,则椭圆
的离心率的平方为( )
A.
B.
C.
D.
同类题4
在直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求
的普通方程与
的直角坐标方程;
(2)若
与
有且仅有四个公共点,求
的取值范围.
同类题5
抛物线
的焦点
是双曲线
的一个焦点,
为抛物线上一点,直线
与双曲线有且只有一个交点,若
,则该双曲线的离心率为( )
A.
B.
C.2
D.
相关知识点
平面解析几何
圆锥曲线
根据椭圆过的点求标准方程
求直线与椭圆的交点坐标
根据直线与椭圆的位置关系求参数或范围