- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
为抛物线
:
的焦点,
是
上一点,
的延长线交
轴于点
,
为
的中点,且
.
(1)求抛物线
的方程;
(2)过
作两条互相垂直的直线
,
,直线
与
交于
,
两点,直线
与
交于
,
两点,求四边形
面积的最小值.











(1)求抛物线

(2)过












已知抛物线
的焦点为
,点
在抛物线
上,点
的纵坐标为8,且
.
(1)求抛物线
的方程;
(2)若点
是抛物线
准线上的任意一点,过点
作直线
与抛物线
相切于点
,证明:
.






(1)求抛物线

(2)若点







在平面直角坐标系中,抛物线C的顶点在原点O,过点
,其焦点F在x轴上.
求抛物线C的标准方程;
斜率为1且与点F的距离为
的直线
与x轴交于点M,且点M的横坐标大于1,求点M的坐标;
是否存在过点M的直线l,使l与C交于P、Q两点,且
若存在,求出直线l的方程;若不存在,说明理由.







如图,抛物线
的焦点,点为
是抛物线
上一点,且
,
的方程为
,过点
作直线
,与抛物线
和
依次交于
.(如图所示)

(1)求抛物线
的方程;
(2)求
的最小值.












(1)求抛物线

(2)求

如图,在平面直角坐标系
中,点
,
在抛物线
上.

(1)求
,
的值;
(2)过点
作
垂直于
轴,
为垂足,直线
与抛物线的另一交点为
,点
在直线
上.若
,
,
的斜率分别为
,
,
,且
,求点
的坐标.







(1)求


(2)过点
















已知直线
与抛物线
切于点
,直线
经过点
且垂直于
轴。
(1)求
值;
(2)设不经过点
的动直线
交抛物线
于点
,交直线
于点
,若直线
的斜率依次成等差数列,试问:直线
是否过定点?若是请求出该定点坐标,若不是,请说明理由。






(1)求

(2)设不经过点








(本题满分14分)已知抛物线
的方程为
,点
在抛物线
上.
(1)求抛物线
的方程;
(2)过点
作直线交抛物线
于不同于
的两点
,若直线
分别交直线
于
两点,求
最小时直线
的方程.




(1)求抛物线

(2)过点









