刷题首页
题库
高中数学
题干
已知抛物线
y
2
=2
px
(
p
>0)上任意一点到直线
y
=
x
+2的距离的最小值为
.
(1)求抛物线的方程;
(2)过(3,0)且斜率为1的直线交抛物线于
D
,
H
两点,将线段
DH
向左平移3个单位长度至
D
1
H
1
,设
和
分别表示△
EDH
和△
ED
1
H
1
的面积,问在抛物线上是否存在点
E
,使得
最大?若存在,求出最大值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-29 08:42:44
答案(点此获取答案解析)
同类题1
如图,抛物线
的焦点为
,抛物线上一定点
.
(1)求抛物线
的方程及准线
的方程;
(2)过焦点
的直线(不经过点
)与抛物线交于
两点,与准线
交于点
,记
的斜率分别为
,
,
,问是否存在常数
,使得
成立?若存在
,求出
的值;若不存在,说明理由.
同类题2
已知抛物线
上一点
的纵坐标为6,且点
到焦点
的距离为7.
(1)求抛物线
的方程;
(2)设
为过焦点
且互相垂直的两条直线,直线
与抛物线
相交于
两点,直线
与抛物线
相交于点
两点,若直线
的斜率为
,且
,试求
的值.
同类题3
已知抛物线
和
的焦点分别为
,
,
,
,交于
,
两点(
为坐标原点),且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)过点
的直线交
,下半部分于点
,交
的左半部分于点
,点
的坐标为
,求
面积的最小值.
同类题4
已知抛物线
:
过点
,
为其焦点,过
且不垂直于
轴的直线
交抛物线
于
,
两点,动点
满足
的垂心为原点
.
(1)求抛物线
的方程;
(2)求证:动点
在定直线
上,并求
的最小值.
同类题5
如图,在底面半径和高均为
的圆锥中,
、
是底面圆
的两条互相垂直的直径,
是母线
的中点.已知过
与
的平面与圆锥侧面的交线是以
为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点
的距离等于( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
根据抛物线上的点求标准方程
抛物线中的参数范围问题