- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- + 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:
=2px经过点
(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,
,
,求证:
为定值.


(Ⅰ)求直线l的斜率的取值范围;
(Ⅱ)设O为原点,



在直角坐标系xOy中,已知抛物线C:y2=2px(p>0)的焦点为F,过F垂直于x轴的直线与C相交于A、B两点,△AOB的面积为2.
(1)求抛物线C的方程;
(2)若过P(
,0)的直线与C相交于M,N两点,且
2
,求直线l的方程.
(1)求抛物线C的方程;
(2)若过P(



已知抛物线
:
.
(1)若直线
经过抛物线
的焦点,求抛物线
的准线方程;
(2)若斜率为-1的直线经过抛物线
的焦点
,且与抛物线
交于
,
两点,当
时,求抛物线
的方程.


(1)若直线



(2)若斜率为-1的直线经过抛物线







如图所示,已知点
是抛物线
上一定点,直线
、
的斜率互为相反数,且与抛物线另交于
两个不同的点.

(1)求点
到其准线的距离;
(2)求证:直线
的斜率为定值.






(1)求点

(2)求证:直线

已知抛物线
:
的焦点为
,过点
的直线
与抛物线
在第一象限交于点
,与抛物线
的准线交于点
,过点
作抛物线
的准线的垂线,垂足为
.若
,
,则抛物线
的标准方程是______.














