- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- + 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线C:y2=2px(p>0)的焦点为F,若过点F且斜率为1的直线与抛物线相交于M,N两点,且|MN|=8.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求
的最小值.
(1)求抛物线C的方程;
(2)设直线l为抛物线C的切线,且l∥MN,P为l上一点,求

已知抛物线
,过抛物线
的焦点的直线
与抛物线
相交于
,
两点,线段
的长度为8,且
的中点到
轴的距离为3.
(1)求抛物线
的方程;
(2)已知抛物线
与直线
交于
,
两点,判断坐标原点
是否在以
为直径的圆上,并说明理由.









(1)求抛物线

(2)已知抛物线






(2017-2018学年福建省高三毕业班第三次质量检查)已知抛物线
上的点
到点
距离的最小值为
.
(1)求抛物线
的方程;
(2)若
,圆
,过
作圆
的两条切线分别交
轴于
两点,求
面积的最小值.




(1)求抛物线

(2)若







已知椭圆
:
(
)的离心率为
,直线
与以原点为圆心、以椭圆
的短半轴长为半径的圆相切.
(1)求椭圆
的方程;
(2)设椭圆
的左焦点为
,右焦点为
,直线
过点
且垂直于椭圆的长轴,动直线
垂直
于点
,线段
的垂直平分线交
于点
.
(i)求点
的轨迹
的方程;
(ii)若
为点
的轨迹
的过点
的两条相互垂直的弦,求四边形
面积的最小值.






(1)求椭圆

(2)设椭圆











(i)求点


(ii)若





已知抛物线














(Ⅰ)求

(Ⅱ)若直线




(ⅰ)证明直线

(ⅱ)

已知抛物线
及点
,动直线
与抛物线
交于
、
两点,若直线
与
的倾斜角分别为
,且
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)若
为抛物线
上不与原点
重合的一点,点
是线段
上与点
,
不重合的任意一点,过点
作
轴的垂线依次交抛物线
和
轴于点
,求证:
.










(Ⅰ)求抛物线

(Ⅱ)若













如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点
且
为钝角.

(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.









(1)求曲线


(2)过



