- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 根据焦点或准线写出抛物线的标准方程
- + 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,已知抛物线
,交点为
,直线
交抛物线
于
,
两点,
为
中点,且
.
(
)求抛物线
的方程.
(
)若过
作抛物线
的切线
,过
作
轴平行的直线
,设
与
相交于点
,
与
相交于点
,求证:
为定值,并求出该定值.









(


(














已知抛物线
的焦点为
,抛物线
上的点
到
的距离为3.
(Ⅰ)求抛物线
的方程;
(Ⅱ)斜率存在的直线
与抛物线相交于相异两点
,
.若
的垂直平分线交
轴于点
,且
,求直线
方程.





(Ⅰ)求抛物线

(Ⅱ)斜率存在的直线








抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
已知抛物线x2=-2py(p>0)上纵坐标为-p的点到其焦点F的距离为3.
(1)求抛物线的方程;
(2)若直线l与抛物线以及圆x2+(y-1)2=1都相切,求直线l的方程.
(1)求抛物线的方程;
(2)若直线l与抛物线以及圆x2+(y-1)2=1都相切,求直线l的方程.
设点
,动圆
经过点
且和直线
相切.记动圆的圆心
的轨迹为曲线
.
(Ⅰ)求曲线
的方程;
(Ⅱ)过点
作互相垂直的直线
、
分别交曲线
于
和
,求四边形
面积的最小值.






(Ⅰ)求曲线

(Ⅱ)过点







已知抛物线
:
的焦点为
,抛物线
与直线
交于两点
(
为坐标原点),且
.
(1)求抛物线
的方程.
(2)不过原点的直线
与
垂直,且与抛物线交于不同的两点
、
,若坐标原点
在以线段
为直径的圆上,求
的面积.








(1)求抛物线

(2)不过原点的直线







已知一个动点
到点
的距离比到直线
的距离多1.
(1)求动点
的轨迹
的方程;
(2)若过点
的直线
与曲线
交于
两点,且线段
中点是点
,求直线
的方程.



(1)求动点


(2)若过点







已知曲线
位于第一、四象限(含原点),且
上任意一点的横坐标比其到点
的距离小1.
(Ⅰ)求曲线
的方程;
(Ⅱ)求曲线
上到直线
的距离最小的点的坐标.



(Ⅰ)求曲线

(Ⅱ)求曲线


已知抛物线
的焦点为F,点
在此抛物线上,
,不过原点的直线
与抛物线C交于A,B两点,以AB为直径的圆M过坐标原点.
(1)求抛物线C的方程;
(2)证明:直线
恒过定点;
(3)若线段AB中点的纵坐标为2,求此时直线
和圆M的方程.




(1)求抛物线C的方程;
(2)证明:直线

(3)若线段AB中点的纵坐标为2,求此时直线
