- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在平面直角坐标系
中,设抛物线
的焦点是双曲线
的右焦点,抛物线的准线与
轴的交点为
,若抛物线上存在一点
,且
,则直线
的方程为__________.








已知抛物线C:y2=2px(p>0)的焦点为F,过F且斜率为
的直线l与抛物线C交于A,B两点,B在x轴的上方,且点B的横坐标为4.

(1)求抛物线C的标准方程;
(2)设点P为抛物线C上异于A,B的点,直线PA与PB分别交抛物线C的准线于E,G两点,x轴与准线的交点为H,求证:HG•HE为定值,并求出定值.


(1)求抛物线C的标准方程;
(2)设点P为抛物线C上异于A,B的点,直线PA与PB分别交抛物线C的准线于E,G两点,x轴与准线的交点为H,求证:HG•HE为定值,并求出定值.
求适合下列条件的圆锥曲线的标准方程.
(1)求与椭圆
有公共焦点,且离心率
的双曲线的方程.
(2)求顶点在原点,准线方程为
的抛物线的方程.
(1)求与椭圆


(2)求顶点在原点,准线方程为

已知抛物线
的焦点为F,准线为l,过点F且斜率为
的直线交抛物线于点M(M在第一象限),MN⊥l,垂足为N,直线NF交y轴于点D,若|MD|=
,则抛物线方程是( )



A.![]() | B.![]() | C.![]() | D.![]() |