刷题首页
题库
高中数学
题干
求满足下列条件的曲线的标准方程:
(1)
,
,焦点在
轴上的椭圆;
(2)顶点在原点,对称轴是坐标轴,且焦点在直线
上抛物线的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-03 05:03:17
答案(点此获取答案解析)
同类题1
已知点
,过点
作抛物线
:
的切线
,切点
在第二象限.
(1)求切点
的纵坐标;
(2)有一离心率为
的椭圆
:
恰好经过切点
,设切线
与椭圆
的另一交点为点
,记切线
、
、
的斜率分别为
、
、
,若
,求椭圆
的方程.
同类题2
已知椭圆
C
:
=
1(
a>b>
0)的离心率为
,
F
1
,
F
2
是椭圆的两个焦点,
P
是椭圆上任意一点,且△
PF
1
F
2
的周长是8
+
2
.
(1)求椭圆
C
的方程;
(2)设圆
T
:(
x-
2)
2
+y
2
=
,过椭圆的上顶点
M
作圆
T
的两条切线交椭圆于
E
,
F
两点,求直线
EF
的斜率
.
同类题3
已知椭圆
的焦点在
轴上,短轴长为2,离心率为
.
(1)求椭圆
的标准方程;
(2)直线
:
与椭圆
相交于
,
两点,且弦
中点横坐标为1,求
值.
同类题4
已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据焦点或准线写出抛物线的标准方程