- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线
的焦点曲线
的一个焦点,
为坐标原点,点
为抛物线
上任意一点,过点
作
轴的平行线交抛物线的准线于
,直线
交抛物线于点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)求证:直线
过定点
,并求出此定点的坐标.










(Ⅰ)求抛物线

(Ⅱ)求证:直线


已知抛物线
的焦点为
,点
的坐标为
,点
在抛物线
上,且满足
,(
为坐标原点).
(1)求抛物线
的方程;
(2)过点
作斜率乘积为1的两条不重合的直线
,且
与抛物线
交于
两点,
与抛物线
交于
两点,线段
的中点分别为
,求证:直线
过定点,并求出定点坐标.








(1)求抛物线

(2)过点











已知抛物线
的顶点在原点,焦点在
轴上,且抛物线上有一点
到焦点的距离为6.
(1)求该抛物线
的方程;
(2)已知抛物线上一点
,过点
作抛物线的两条弦
和
,且
,判断直线
是否过定点,并说明理由.



(1)求该抛物线

(2)已知抛物线上一点






如图,已知抛物线C的顶点在原点,焦点F在
轴上,抛物线上的点A到F的距离为2,且A的横坐标为1. 过A点作抛物线C的两条动弦AD、AE,且AD、AE的斜率满足

(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.



(1)求抛物线C的方程;
(2)直线DE是否过某定点?若过某定点,请求出该点坐标;若不过某定点,请说明理由.
如图所示,抛物线
的焦点为
.

(1)求抛物线
的标准方程;
(2)过
的两条直线分别与抛物线
交于点
,
与
,
(点
,
在
轴的上方).
①若
,求直线
的斜率;
②设直线
的斜率为
,直线
的斜率为
,若
,求证:直线
过定点.



(1)求抛物线

(2)过









①若


②设直线






已知点
是抛物线
的焦点,若点
在抛物线
上,且
求抛物线
的方程;
动直线
与抛物线
相交于
两点,问:在
轴上是否存在定点
其中
,使得向量
与向量
共线
其中
为坐标原点
?若存在,求出点
的坐标;若不存在,请说明理由.




















已知抛物线
的焦点坐标为
(1)求抛物线的标准方程.
(2)若过
的直线
与抛物线交于
两点,在抛物线上是否存在定点
,使得以
为直径的圆过定点
.若存在,求出点
,若不存在,说明理由.


(1)求抛物线的标准方程.
(2)若过







已知双曲线
:
的左焦点恰好在抛物线
的准线上,过点
作两直线
分别与抛物线
交于
两点,若直线
的倾斜角互补,则点
的纵坐标之和为










A.![]() | B.![]() | C.![]() | D.![]() |