- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- + 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为( )
A.![]() | B. ![]() | C. ![]() | D. ![]() |
点M(5,3)到抛物线y=ax2(a≠0)的准线的距离为6,那么抛物线的方程是( )
A.y=12x2 | B.y=12x2或y=-36x2 |
C.y=-36x2 | D.y=![]() ![]() |
已知抛物线C:x2=2py(p>0)的焦点到直线l:2x﹣y﹣1=0的距离为
.
(1)求抛物线的方程;
(2)过点P(0,t)(t>0)的直线l与抛物线C交于A,B两点,交x轴于点Q,若抛物线C上总存在点M(异于原点O),使得∠PMQ=∠AMB=90°,求实数t的取值范围.

(1)求抛物线的方程;
(2)过点P(0,t)(t>0)的直线l与抛物线C交于A,B两点,交x轴于点Q,若抛物线C上总存在点M(异于原点O),使得∠PMQ=∠AMB=90°,求实数t的取值范围.
已知椭圆
的离心率为
,焦距为
,与抛物线
有公共焦点
.
(1)求椭圆C1与抛物线
的方程;
(2)已知直线
是圆
的一条切线,与椭圆C1交于
两点,若直线
斜率存在且不为
,在椭圆C1上存在点
,使
,其中
为坐标原点,求实数λ的取值范围.





(1)求椭圆C1与抛物线

(2)已知直线








如图,已知点
为抛物线
的焦点,过点
的直线交抛物线于
、
两点,点
在抛物线上,使得
的重心
在
轴上,直线
交
轴于点
,且
在点
的右侧.记
、
的面积分别
、
.

(1)求
的值及抛物线的方程;
(2)求
的最小值及此时点
的坐标.



















(1)求

(2)求

