- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线的定义
- 抛物线标准方程的形式
- + 抛物线标准方程的求法
- 根据焦点或准线写出抛物线的标准方程
- 根据定义求抛物线的标准方程
- 根据抛物线上的点求标准方程
- 求抛物线的轨迹方程
- 求实际问题中的抛物线方程
- 抛物线的顶点、开口方向
- 抛物线的范围
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知F为抛物线
的焦点,过F且倾斜角为
的直线交抛物线于A,B两点,
.
(1)求抛物线的方程:
(2)已知
为抛物线上一点,M,N为抛物线上异于P的两点,且满足
,试探究直线MN是否过一定点?若是,求出此定点;若不是,说明理由.




(1)求抛物线的方程:
(2)已知


抛物线
的顶点为原点
,焦点
在
轴正半轴,过焦点且倾斜角为
的直线
交抛物线于点
,若
中点的横坐标为3,则抛物线
的方程为____________









在平面直角坐标系
中,动点
到定点
的距离与它到直线
的距离相等.
(1)求动点
的轨迹
的方程;
(2)设动直线
与曲线
相切于点
,与直线
相交于点
.
证明:以
为直径的圆恒过
轴上某定点.




(1)求动点


(2)设动直线





证明:以


如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上.

(1)求p的值及抛物线的准线方程;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.

(1)求p的值及抛物线的准线方程;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.
已知抛物线
:
上横坐标为4的点到焦点的距离为5.

(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.



(1)求抛物线

(2)设直线




















①求证:

②计算


③根据






已知抛物线
焦点为
,
为抛物线上在第一象限内一点,
为原点,
面积为
.
(1)求抛物线方程;
(2)过
点作两条直线分别交抛物线于异于点
的两点
,
,且两直线斜率之和为
,
(i)若
为常数,求证直线
过定点
;
(ii)当
改变时,求(i)中距离
最近的点
的坐标.






(1)求抛物线方程;
(2)过





(i)若



(ii)当



已知抛物线C的焦点在y轴上,焦点到准线的距离为2,且对称轴为y轴.
(1)求抛物线C的标准方程;
(2)当抛物线C的焦点为
时,过F作直线交抛物线于,A、B两点,若直线OA,OB(O为坐标原点)分别交直线
于M、N两点,求
的最小值.
(1)求抛物线C的标准方程;
(2)当抛物线C的焦点为


