刷题首页
题库
高中数学
题干
在平面直角坐标系
中,动点
到定点
的距离与它到直线
的距离相等.
(1)求动点
的轨迹
的方程;
(2)设动直线
与曲线
相切于点
,与直线
相交于点
.
证明:以
为直径的圆恒过
轴上某定点.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-08 08:24:18
答案(点此获取答案解析)
同类题1
已知点
,直线
,
为直角坐标平面上的动点,过动点
作的垂线,垂足为点
,且满足
.
(1)求动点
的轨迹
的方程;
(2)若直线
与(1)中的轨迹
相切于点
,
,且
与圆心为
的圆
,相交于
,
两点,当
的面积最大时,求点
的坐标.
同类题2
已知平面内的定点
到定直线
的距离等于
,动圆
过点
且与直线
相切,记圆心
的轨迹为曲线
.在曲线
上任取一点
,过
作
的垂线,垂足为
.
(1)求曲线
的轨迹方程;
(2)记点
到直线
的距离为
,且
,求
的取值范围;
(3)判断
的平分线所在的直线与曲线的交点个数,并说明理由.
同类题3
如图,设点
,直线
,点
在直线
上移动,
是线段
与
轴的交点,
,
.
(1)求动点
的轨迹
的方程;
(2)直线
过点
,与轨迹
交于
两点,过点
的直线与直线
交于点
,求证:
轴.
同类题4
在直角坐标系
中,点
,
是曲线
上的任意一点,动点
满足
(1)求点
的轨迹方程;
(2)经过点
的动直线
与点
的轨迹方程交于
两点,在
轴上是否存在定点
(异于点
),使得
?若存在,求出
的坐标;若不存在,请说明理由.
同类题5
已知抛物线
的焦点为
,过点
且倾斜角为
的直线
被
截得的弦长为16.
(1)求
的方程;
(2)点
是
上一点,若以
为直径的圆过点
,求该圆的方程.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的求法
求抛物线的轨迹方程